Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(8): 2897-2908    DOI: 10.1088/1674-1056/17/8/024
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Peculiar features of the interaction potential between hydrogen and antihydrogen at intermediate separations

Lee Teck-Ghee(李德义)a)b), Wong Cheuk-Yin(黄卓然)a)c), and Wang Lee-Shien(王礼贤)d)
a Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; b Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA; c School of Physics & Optoelectronic Technology, Dalian University of Technology, Dalian 116024, Chinad Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
Abstract  This paper evaluates the interaction potential between a hydrogen and an antihydrogen using the second-order perturbation theory within the framework of the four-body system in a separable two-body basis. It finds that the H--$\bar{\rm H}$ interaction potential possesses the peculiar features of a shallow local minimum located around interatomic separations of $r\sim 6$ a.u. and a barrier rising at $r\lesssim5 $ a.u.
Keywords:  few-body problems      potential energy curve      perturbation theory      H--$\bar{\rm H}$ interaction  
Received:  15 November 2007      Revised:  27 December 2007      Accepted manuscript online: 
PACS:  34.20.Cf (Interatomic potentials and forces)  
  31.15.ve (Electron correlation calculations for atoms and ions: ground state)  
  34.50.-s (Scattering of atoms and molecules)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No 10575024), and in part by the Division of Nuclear Physics, Department of Energy (Grant No DE-AC05-00OR22725) managed by UT-Battelle, LLC.

Cite this article: 

Lee Teck-Ghee(李德义), Wong Cheuk-Yin(黄卓然), and Wang Lee-Shien(王礼贤) Peculiar features of the interaction potential between hydrogen and antihydrogen at intermediate separations 2008 Chin. Phys. B 17 2897

[1] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[2] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[3] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[4] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[5] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[6] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[7] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[8] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[9] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[10] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[11] The effect of a permanent dipole moment on the polar molecule cavity quantum electrodynamics
Jing-Yun Zhao(赵晶云), Li-Guo Qin(秦立国), Xun-Ming Cai(蔡勋明), Qiang Lin(林强), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2016, 25(4): 044202.
[12] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[13] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[14] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
[15] First-principles study of structure and nonlinear optical properties of CdHg(SCN)4 crystal
Zhang Peng (张鹏), Kong Chui-Gang (孔垂岗), Zheng Chao (郑超), Wang Xin-Qiang (王新强), Ma Yue (马跃), Feng Jin-Bo (冯金波), Jiao Yu-Qiu (矫玉秋), Lu Gui-Wu (卢贵武). Chin. Phys. B, 2015, 24(2): 024221.
No Suggested Reading articles found!