Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(3): 1070-1077    DOI: 10.1088/1674-1056/17/3/053
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Formation of high density TiN nanocrystals and its application in non-volatile memories

Li Xue-Lin(李学林)a)c),Feng Shun-Shan(冯顺山)b), and Chen Guo-Guang(陈国光)a)
a North University of China, Taiyuan 030051, China; b Beijing Institute of Technology, Beijing 100081, China; c Shandong Machinery (Group) Co. Ltd, Zibo 255201, China
Abstract  Non-volatile memory based on TiN nanocrystal (TiN--NC) charge storage nodes embedded in SiO$_{2}$ has been fabricated and its electrical properties have been measured. It was found that the density and size distribution of TiN--NCs can be controlled by annealing temperature. The formation of well separated crystalline TiN nano-dots with an average size of 5 nm is confirmed by transmission electron microscopy and x-ray diffraction. x-ray photoelectron spectroscopy confirms the existence of a transition layer of TiN$_{x}$O$_{y}$/SiON oxide between TiN--NC and SiO$_{2}$, which reduces the barrier height of tunnel oxide and thereby enhances programming/erasing speed. The memory device shows a memory window of 2.5 V and an endurance cycle throughout 10$^{5}$. Its charging mechanism, which is interpreted from the analysis of programming speed (d$V_{\rm th}$/d$t$) and the gate leakage versus voltage characteristics ($I_{\rm g}$ vs $V_{\rm g})$, has been explained by direct tunnelling for tunnel oxide and Fowler--Nordheim tunnelling for control oxide at programming voltages lower than 9V, and by Fowler--Nordheim tunnelling for both the oxides at programming voltages higher than 9 V.
Keywords:  TiN nanocrystal      size      density      non-volatile memory application  
Received:  08 May 2007      Revised:  13 September 2007      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.-p (Nanoelectronic devices)  

Cite this article: 

Li Xue-Lin(李学林), Feng Shun-Shan(冯顺山), and Chen Guo-Guang(陈国光) Formation of high density TiN nanocrystals and its application in non-volatile memories 2008 Chin. Phys. B 17 1070

[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[12] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[13] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[14] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[15] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
No Suggested Reading articles found!