Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(10): 3836-3840    DOI: 10.1088/1674-1056/17/10/049
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Study of He-induced nano-cavities as sinks of oxygen for forming silicon-on-insulator

Li Bing-Sheng(李炳生)a), Zhang Chong-Hong(张崇宏)a), Hao Xiao-Peng(郝小鹏)b), Wang Dan-Ni(王丹妮)b), Zhou Li-Hong(周丽宏)a), Zhang Hong-Hua(张洪华)a), Yang Yi-Tao(杨义涛)a), and Zhang Li-Qing(张丽卿)a)
a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
Abstract  In the present work, a Cz--Silicon wafer is implanted with helium ions to produce a buried porous layer, and then thermally annealed in a dry oxygen atmosphere to make oxygen transport into the cavities. The formation of the buried oxide layer in the case of internal oxidation (ITOX) of the buried porous layer of cavities in the silicon sample is studied by positron beam annihilation (PBA). The cavities are formed by 15 keV He implantation at a fluence of $2\times 10^{16}$ cm$^{ - 2}$ and followed by thermal annealing at 673 K for 30 min in vacuum. The internal oxidation is carried out at temperatures ranging from 1073 to 1473 K for 2 h in a dry oxygen atmosphere. The layered structures evolved in the silicon are detected by using the PBA and the thicknesses of their layers and nature are also investigated. It is found that rather high temperatures must be chosen to establish a sufficient flux of oxygen into the cavity layer. On the other hand high temperatures lead to coarsening the cavities and removing the cavity layer finally.
Keywords:  positron annihilation      nanocavity      oxygen diffusion      silicon dioxide  
Received:  30 January 2008      Revised:  04 March 2008      Accepted manuscript online: 
PACS:  61.80.Jh (Ion radiation effects)  
  61.82.Fk (Semiconductors)  
  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  81.65.Mq (Oxidation)  
  78.70.Bj (Positron annihilation)  

Cite this article: 

Li Bing-Sheng(李炳生), Zhang Chong-Hong(张崇宏), Hao Xiao-Peng(郝小鹏), Wang Dan-Ni(王丹妮), Zhou Li-Hong(周丽宏), Zhang Hong-Hua(张洪华), Yang Yi-Tao(杨义涛), and Zhang Li-Qing(张丽卿) Study of He-induced nano-cavities as sinks of oxygen for forming silicon-on-insulator 2008 Chin. Phys. B 17 3836

[1] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[4] First-principles investigations of proton generation in α-quartz
Yunliang Yue(乐云亮), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2018, 27(3): 037102.
[5] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[6] Resonant magneto-optical Kerr effect induced by hybrid plasma modes in ferromagnetic nanovoids
Xia Zhang(张 霞), Lei Shi(石 磊), Jing Li(李晶), Yun-Jie Xia(夏云杰), Shi-Ming Zhou(周仕明). Chin. Phys. B, 2017, 26(11): 117801.
[7] A high-quality factor hybrid plasmonic nanocavity based on distributed Bragg reflectors
Linlin Tu(屠林林), Chi Zhang(张弛), Zhong Huang(黄忠), Jason Yau, Peng Zhan(詹鹏), Zhenlin Wang(王振林). Chin. Phys. B, 2016, 25(9): 097302.
[8] Effect of size on momentum distribution of electrons around vacancies in NiO nanoparticles
Anjan Das, Atis Chandra Mandal, P. M. G. Nambissan. Chin. Phys. B, 2015, 24(4): 046102.
[9] Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods
Zhang Wen-Shuai (张文帅), Gu Bing-Chuan (谷冰川), Han Xiao-Xi (韩小溪), Liu Jian-Dang (刘建党), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2015, 24(10): 107804.
[10] A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide
M Afshari Bavil, Sun Xiu-Dong (孙秀冬). Chin. Phys. B, 2013, 22(4): 047808.
[11] Effect of vacancy charge state on positron annihilation in silicon
Liu Jian-Dang (刘建党), Cheng Bin (成斌), Kong Wei (孔伟), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2013, 22(10): 106104.
[12] Theoretical study on the positron annihilation in Rocksalt structured magnesium oxide
Liu Jian-Dang(刘建党), Zhang Jie(张杰), Zhang Li-Juan(张丽娟), Hao Ying-Ping(郝颖萍), Guo Wei-Feng(郭卫锋), Cheng Bin(成斌), and Ye Bang-Jiao(叶邦角). Chin. Phys. B, 2011, 20(5): 057802.
[13] Enhanced etching of silicon dioxide guided by carbon nanotubes in HF solution
Zhao Hua-Bo(赵华波), Ying Alex Yi-Qun(应轶群), Yan Feng(严峰), Wei Qin-Qin(魏芹芹), Fu Yun-Yi(傅云义), Zhang Yan(张岩), Li Yan(李彦), Wei Zi-Jun(魏子钧), and Zhang Zhao-Hui(张朝晖) . Chin. Phys. B, 2011, 20(10): 108103.
[14] Identification of the pressure-induced phase transition of ZnSe with the positron annihilation method
Liu Jian-Dang(刘建党), Cheng Bin(成斌), Zhang Jie(张杰), Zhang Li-Juan(张丽娟),Weng Hui-Min(翁惠民), and Ye Bang-Jiao(叶邦角) . Chin. Phys. B, 2011, 20(10): 108105.
[15] Numerical analysis of surface plasmon nanocavities formed in thickness-modulated metal-insulator-metal waveguides
Liu Jian-Long(刘建龙), Lin Jie(林杰), Zhao Hai-Fa(赵海发), Zhang Yan(张岩), and Liu Shu-Tian(刘树田). Chin. Phys. B, 2010, 19(5): 054201.
No Suggested Reading articles found!