Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054201    DOI: 10.1088/1674-1056/19/5/054201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Numerical analysis of surface plasmon nanocavities formed in thickness-modulated metal-insulator-metal waveguides

Liu Jian-Long(刘建龙)a), Lin Jie(林杰)b), Zhao Hai-Fa(赵海发)a), Zhang Yan(张岩)c), and Liu Shu-Tian(刘树田) a)†
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; c Department of Physics, Capital Normal University, Beijing 100037, China
Abstract  The enhancement characteristics of the local field in the surface plasmon nanocavities are investigated numerically. The cavity is constructed by placing a defect structure in the thickness-modulated metal--insulator--metal waveguide Bragg gratings. The characteristic impedance based transfer matrix method is used to calculate the transmission spectra and the resonant wavelength of the cavities with various geometric parameters. The finite-difference time-domain method is used to obtain the field pattern of the resonant mode and validate the results of the transfer matrix method. The calculation and simulation results reveal the existence of resonant wavelength shift and intensity variation with structural parameters, such as the modulation period of the gratings, the length and the width of the defect structure. Both numerical analysis and theoretical interpretation on these phenomena are given in details.
Keywords:  surface plasmon      nanocavity      local field enhancement  
Received:  30 May 2009      Revised:  18 September 2009      Accepted manuscript online: 
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
  02.60.Dc (Numerical linear algebra)  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10674038 and 10604042), and the National Basic Research Program of China (Grant No.~2006CB302901).

Cite this article: 

Liu Jian-Long(刘建龙), Lin Jie(林杰), Zhao Hai-Fa(赵海发), Zhang Yan(张岩), and Liu Shu-Tian(刘树田) Numerical analysis of surface plasmon nanocavities formed in thickness-modulated metal-insulator-metal waveguides 2010 Chin. Phys. B 19 054201

[1] Krenn J R 2003 Nat. Mater. 2 210
[2] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E and Requicha A A G 2003 Nat. Mater. 2 229
[3] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[4] Pitarke J M, Silkin V M, Chulkov E V and Echenique P M 2007 Rep. Prog. Phys. 70 1
[5] Zhang H X, Gu Y and Gong Q H 2008 Chin. Phys. B 17 2567
[6] Maier S A, Friedman M D, Barclay P E and Painter O 2005 Appl. Phys. Lett. 86 071103
[7] Ebbesen T W, Genet C and Bozhebolnyi S I 2008 Phys. Today 61 44
[8] Veronis G and Fan S 2005 Opt. Lett. 30 3359
[9] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
[10] Nikolajsen T, Leosson K and Bozhevolnyi S I 2004 Appl. Phys. Lett. 85 5833
[11] Yang P F, Gu Y and Gong Q H 2008 Chin. Phys. B 17 3880
[12] Xue W R, Guo Y N and Zhang W M 2009 Chin. Phys. B 18 2529
[13] Tanaka K and Tanaka M 2003 Appl. Phys. Lett. 82 1158
[14] Liu L, Han Z and He S 2005 Opt. Express 13 6645
[15] Pile D F P, Ogawa T, Gramotven D K, Matsuzaki Y, Vernon K C, Yamaguchi T, Okamoto K, Haraguchi M and Fukui M 2005 Appl. Phys. Lett. 87 261114
[16] Dionne J A, Sweatlock L A, Atwater H A and Polman A 2006 Phys. Rev. B 73 035407
[17] Feigenbaum E and Orenstein M 2007 J. Lightwave Technol. 25 2547
[18] Hobson P A, Wedge S, Wasey J A E, Sage I and Barnes W L 2002 Adv. Mater. 14 1393
[19] Tredicucci A, Gmachl C, Capasso F, Hutchinson A L, Sivco D L and Cho A Y 2000 Appl. Phys. Lett. 76 2164
[20] Wang B and Wang G P 2005 Appl. Phys. Lett. 87 013107
[21] Hosseini A and Massoud Y 2006 Opt. Express 14 11318
[22] Han Z, Forsberg E and He S 2007 IEEE Photon. Technol. Lett. 19 91
[23] Hu B, Liu J, Gu B, Di S, Sun X and Wang S 2007 J. Opt. Soc. Am. A 24 A1
[24] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[25] Ramo S, Whinnery J R and Duzer T V 1994 Fields and Waves in Communication Electronics (New York: John Wiley & Sons)
[26] Veronis G and Fan S H 2005 Appl. Phys. Lett. 87 131102
[27] Hosseini A, Nejati H and Massoud Y 2008 Opt. Express 16 1475
[28] Kocabas S E, Veronis G, Miller D A B and Fan S 2008 IEEE Journal of Selected Topics in Quantum Electronics 14 1462
[29] Yeh P 1998 Optical Waves in Layered Media (New York: Wiley)
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[9] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[10] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[11] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[12] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[13] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
No Suggested Reading articles found!