Please wait a minute...
Chinese Physics, 2007, Vol. 16(5): 1450-1458    DOI: 10.1088/1009-1963/16/5/047
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ground state of a superconducting π ring array under external magnetic fields

Li Zhuang-Zhi(李壮志)a)b), Feng Yun(冯运)c), Wang Fu-Ren(王福仁)a), and Dai Yuan-Dong(戴远东)a)
a Mesoscopic Physics National Laboratory and Department of Physics, Peking University, Beijing 100871, China; b College of Physical Science and Information Engineering,Hebei Normal University, Shijiazhuang 050016, China; c College of Mechanical and Electronic Engineering, Hebei University of Science and Technology, Shijiazhuang 050054, China
Abstract  The ground state of a two-dimensional square superconducting $\pi$ ring array has been investigated. The circulating currents of the $\pi$ ring array will spontaneously magnetize to the `antiferromagnetic' arrangement with directions of the nearest-neighbouring currents circulating oppositely in the absence of an external magnetic field. It is found that the external magnetic field could destroy the anti-parallel configuration effectively. The external magnetic field needed to destroy the anti-parallel configuration is related to the superconducting $\pi$ ring's inductance parameter $\beta=2\pi LI_{\rm c}/\phi_0$. For a small $\beta$ the anti-parallel configuration, which is the lowest-energy ground state of the system, will be fully destroyed and changed to the configuration that the circulating currents have the same direction and parallel to the external magnetic field when the magnetic flux reaches $\phi_0/4$ in each ring. Moreover, the magnetic field needed to destroy the anti-parallel configuration will be very small when $\beta$ is large enough.
Keywords:  $\pi$ ring array      Josephson junction      spontaneous magnetization  
Received:  25 September 2006      Revised:  04 December 2006      Accepted manuscript online: 
PACS:  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Bt (Thermodynamic properties)  
  74.25.Sv (Critical currents)  
  74.78.Bz  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No 2006CB601007).

Cite this article: 

Li Zhuang-Zhi(李壮志), Feng Yun(冯运), Wang Fu-Ren(王福仁), and Dai Yuan-Dong(戴远东) Ground state of a superconducting π ring array under external magnetic fields 2007 Chinese Physics 16 1450

[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[4] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[5] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[6] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[7] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[8] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[9] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[10] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
[11] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[12] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[13] Development of 0.5-V Josephson junction array devices for quantum voltage standards
Lanruo Wang(王兰若), Jinjin Li(李劲劲), Wenhui Cao(曹文会), Yuan Zhong(钟源), Zhonghua Zhang(张钟华). Chin. Phys. B, 2019, 28(6): 068501.
[14] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[15] 0-π transition induced by the barrier strength in spin superconductor Josephson junctions
Wen Zeng(曾文), Rui Shen(沈瑞). Chin. Phys. B, 2018, 27(9): 097401.
No Suggested Reading articles found!