Please wait a minute...
Chinese Physics, 2006, Vol. 15(6): 1177-1183    DOI: 10.1088/1009-1963/15/6/009
GENERAL Prev   Next  

Probabilistically implementing nonlocal operations between two distant qutrits

Shan Yong-Guang (单永光), Nie Jian-Jun (聂建军), Zeng Hao-Sheng (曾浩生)
Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We propose a method to probabilistically implement a nonlocal operation, $% \exp[{\rm i}\xi U_{A}U_{B}{]}$, between two distant qutrits $A$ and $B$, where $\xi \in [0,2\pi ]$ and $U_{A}$, $U_{B}$ are local unitary and Hermitian operations for qutrits $A$ and $B$ respectively. The consumptions of resource for one performance of the method are a single non-maximally entangled qutrit state and 1-trit classical communication. For a given $\xi$ , the successful probability of the method depends on the forms of both entanglement resource and Bob's partial-measurement basis. We systematically discuss the optimal successful probabilities and their corresponding conditions for three cases: adjustable entanglement resource, adjustable partial-measurement basis, adjustable entanglement resource and partial-measurement basis. It is straightforward to generalize the method for producing nonlocal unitary operations between any two $N$-level systems.
Keywords:  nonlocal operation      qutrit      optimal successful probability  
Received:  21 August 2005      Revised:  09 March 2006      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  02.50.Cw (Probability theory)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Major Fundamental Research Project, China (Grant No 2001CB309310), the National Natural Science Foundation of China (Grant Nos 10347128, 10325523 and 90203018), the Natural Science Foundation of Hunan Province (Grant No 04JJ3017), the Science Foundation for Post Doctorate of China (Grant No 2005037695), and the Scientific Research Fund of Hunan Provincial Education Bureau.

Cite this article: 

Shan Yong-Guang (单永光), Nie Jian-Jun (聂建军), Zeng Hao-Sheng (曾浩生) Probabilistically implementing nonlocal operations between two distant qutrits 2006 Chinese Physics 15 1177

[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[4] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
[5] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[6] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[7] Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis
Chen Li-Bing (陈立冰), Lu Hong (路洪). Chin. Phys. B, 2015, 24(7): 070307.
[8] Thermal quantum and total correlations in spin-1 bipartite system
Qiu Liang (仇亮), Ye Bin (叶宾). Chin. Phys. B, 2014, 23(5): 050304.
[9] Correlation dynamics of two-parameter qubit-qutrit states under decoherence
Yuan Hao (袁浩), Wei Lian-Fu (韦联福). Chin. Phys. B, 2013, 22(5): 050303.
[10] One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics
Ma Song-She(马宋设), Chen Mei-Feng(陈美锋), and Jiang Xia-Ping(蒋夏萍) . Chin. Phys. B, 2011, 20(12): 120308.
[11] Robust generation of qutrit entanglement via adiabatic passage of dark states
Yang Zhen-Biao(杨贞标), Wu Huai-Zhi(吴怀志), and Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2010, 19(9): 094205.
[12] Thermal entanglement in two-qutrit spin-1 anisotropic Heisenberg model with inhomogeneous magnetic field
Erhan Albayrak. Chin. Phys. B, 2010, 19(9): 090319.
[13] Two-qutrit maximally entangled states prepared via adiabatic passage in ion-trapped system
Huang Bin(黄彬), Lin Xia(林霞), Lin Hui(林慧), Cai Zhen-Hua(蔡振华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2010, 19(12): 124206.
[14] High-dimension multiparty quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs
Chen Pan(陈攀), Deng Fu-Guo(邓富国), and Long Gui-Lu (龙桂鲁). Chin. Phys. B, 2006, 15(10): 2228-2235.
No Suggested Reading articles found!