Abstract The metastable liquid phase separation and rapid solidification behaviours of Co61.8Cu38.2 alloy were investigated by using differential thermal analysis (DTA) in combination with glass fluxing, electromagnetic levitation (EML) and drop tube techniques. It is found that the liquid phase separation process and the solidification microstructures intensively depend on the experimental processing parameters, such as undercooling level, cooling rate, gravity level, liquid surface tension and the wetting state of crucible. Large undercooling and surface tension difference of the two liquids tend to facilitate further separation and cause severe macrosegregation. On the other hand, rapid cooling and low gravity effectively suppress the coalescence of the minority phase. Severe macrosegregation patterns are formed in the bulk samples processed by both DTA and EML. In contrast, disperse structures with fine spherical Cu-rich spheres homogeneously distributed in the matrix of Co-rich phase have been obtained in drop tube.
Received: 08 November 2005
Revised: 19 December 2005
Accepted manuscript online:
Cao Chong-De (曹崇德) Metastable phase separation and rapid solidification of undercooled Co-Cu alloy under different conditions 2006 Chinese Physics 15 872
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.