Please wait a minute...
Chinese Physics, 2006, Vol. 15(2): 353-364    DOI: 10.1088/1009-1963/15/2/021
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Three-body entanglement induced by spontaneous emission in a three two-level atoms system

Liao Xiang-Ping (廖湘萍)ab, Fang Mao-Fa (方卯发)a, Zheng Xiao-Juan (郑小娟)a, Cai Jian-Wu (蔡建武)ab
a College of Physics and Information Science, Hunan Normal University, Changsha 410081, China; b Department of Physics and Electronics, Zhuzhou Teacher College, Zhuzhou 412007, China
Abstract  We study three-body entanglement induced by spontaneous emission in a three two-level atoms system by using the entanglement tensor approach. The results show that the amount of entanglement is strongly dependent on the initial state of the system and the species of atoms. The three-body entanglement is the result of the coherent superposition of the two-body entanglements. The larger the two-body entanglement is, the stronger the three-body entanglement is. On the other hand, if there exists a great difference in three two-body entanglement measures, the three-body entanglement is very weak. We also find that the maximum of the two-body entanglement obtained with nonidentical atoms is greater than that obtained with identical atoms via adjusting the difference in atomic frequency.
Keywords:  spontaneous emission      entanglement measures  
Received:  17 July 2005      Revised:  02 September 2005      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10374025) and the Young Scientific Research Foundation of Hunan Provincial Education Department (Grand No 04B070).

Cite this article: 

Liao Xiang-Ping (廖湘萍), Fang Mao-Fa (方卯发), Zheng Xiao-Juan (郑小娟), Cai Jian-Wu (蔡建武) Three-body entanglement induced by spontaneous emission in a three two-level atoms system 2006 Chinese Physics 15 353

[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[4] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[5] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[6] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[7] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[8] Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer
Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔). Chin. Phys. B, 2019, 28(5): 057802.
[9] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[10] Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal
Jiang Li(姜丽), Ren-Gang Wan(万仁刚), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2016, 25(10): 104204.
[11] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[12] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[13] Spontaneous emission of “polarized” V-type three-level atoms strongly coupled with an optical cavity
Xue Yan-Li (薛艳丽), Zhu Shi-Deng (朱诗灯), Li Jia-Fang (李家方), Ding Wei (丁伟), Feng Bao-Hua (冯宝华), Li Zhi-Yuan (李志远). Chin. Phys. B, 2015, 24(3): 034202.
[14] Output three-mode entanglement via coherently prepared inverted Y-type atoms
Wang Fei (王飞), Qiu Jing (邱晶). Chin. Phys. B, 2014, 23(4): 044203.
[15] Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond
Zhang Duo (张多), Li Jia-Hua (李家华), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2014, 23(4): 044204.
No Suggested Reading articles found!