Please wait a minute...
Chinese Physics, 2005, Vol. 14(12): 2478-2483    DOI: 10.1088/1009-1963/14/12/018
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Superexcited states of carbon monoxide studied by fast-electron impact

Fan Lan-Lan (范岚岚)a, Zhong Zhi-Ping (钟志萍)b, Zhu Lin-Fan (朱林繁)a, Liu Xiao-Jing (刘小井)a, Cheng Hua-Dong (成华东)a, Yuan Zhen-Sheng (苑震生)a, Xu Ke-Zun (徐克尊)a
a Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; b College of Physical Science, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  Absolute optical oscillator strength density and double differential cross section spectra of CO below 120 eV are determined by fast electron impact. Some peaks above the first ionization threshold stand out as the momentum transfer square $K^2$ increases. The doubly excited Rydberg states converging to $C~^2\Sigma^+$, $D~^2\Pi$, and $F~^2\Pi$ states of CO$^+$, respectively, are confirmed in our spectra. Another peak at around 32 eV is assigned to the transition of $(3\sigma)^{-1}(2\pi)^1~^1\Pi\leftarrow~X^1\Sigma^+ $.
Keywords:  oscillator strength      superexcited state      energy loss      CO  
Received:  22 April 2005      Revised:  08 August 2005      Accepted manuscript online: 
PACS:  34.80.Gs (Molecular excitation and ionization)  
  33.70.Ca (Oscillator and band strengths, lifetimes, transition moments, and Franck-Condon factors)  
Fund: Project supported by the National Nature Science Foundation of China (Grant Nos 10474089, 10134010 and 10004010).

Cite this article: 

Fan Lan-Lan (范岚岚), Zhong Zhi-Ping (钟志萍), Zhu Lin-Fan (朱林繁), Liu Xiao-Jing (刘小井), Cheng Hua-Dong (成华东), Yuan Zhen-Sheng (苑震生), Xu Ke-Zun (徐克尊) Superexcited states of carbon monoxide studied by fast-electron impact 2005 Chinese Physics 14 2478

[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[6] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[7] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[8] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[9] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[10] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[11] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[12] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[13] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[14] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[15] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
No Suggested Reading articles found!