Please wait a minute...
Chinese Physics, 2003, Vol. 12(9): 1011-1015    DOI: 10.1088/1009-1963/12/9/316
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Calculation of scanning tunnelling microscopy images for Kr/graphite system

Zhou Xiao-Lin (周晓林)ab, Chen Xiang-Rong (陈向荣)ac, Yang Xiang-Dong (杨向东)ab, Gou Qing-Quan (芶清泉)a
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b Department of Physics, Sichuan Normal University, Chengdu 610066, China; c Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
Abstract  The scanning-tunnelling-microscopy (STM) images of Kr atoms adsorbed on a monolayer graphite sheet (Kr/graphite system) are calculated using the first-principle total-energy electronic structure calculations within the density functional theory in the local density approximation. The results obtained agree well with the observations. It is found that the optimal site of the adsorbed Kr atom is at the top of the centre of the carbon hexagon, and its equilibrium distance from monolayer graphite surface is about 0.335nm. It is shown that the hybridization of C 2p electronic states ($\pi$-electronic states) and Kr 4p and 5s electronic states is the main origin of the Fermi-level local density of state.
Keywords:  surface electronic states      local density approximation      scanning tunnelling microscopy      graphite  
Received:  19 November 2002      Revised:  14 April 2003      Accepted manuscript online: 
PACS:  68.43.Mn (Adsorption kinetics ?)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10274055).

Cite this article: 

Zhou Xiao-Lin (周晓林), Chen Xiang-Rong (陈向荣), Yang Xiang-Dong (杨向东), Gou Qing-Quan (芶清泉) Calculation of scanning tunnelling microscopy images for Kr/graphite system 2003 Chinese Physics 12 1011

[1] Linear and nonlinear optical response of g-C3N4-based quantum dots
Jing-Zhi Zhang(张竞之) and Hong Zhang(张红). Chin. Phys. B, 2021, 30(7): 077802.
[2] Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations
Qianpeng Wang(王乾鹏), Daye Zheng(郑大也), Lixin He(何力新), and Xinguo Ren(任新国). Chin. Phys. B, 2021, 30(10): 107102.
[3] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[4] Theoretical analysis of cross-plane lattice thermal conduction in graphite
Yun-Feng Gu(顾云风). Chin. Phys. B, 2019, 28(6): 066301.
[5] Pressure-mediated contact quality improvement between monolayer MoS2 and graphite
Mengzhou Liao(廖梦舟), Luojun Du(杜罗军), Tingting Zhang(张婷婷), Lin Gu(谷林), Yugui Yao(姚裕贵), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017301.
[6] Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function
S M Khidzir, M F M Halid, W A T Wan Abdullah. Chin. Phys. B, 2016, 25(6): 067105.
[7] Irradiation effects of graphene and thin layer graphite induced by swift heavy ions
Zeng Jian (曾健), Liu Jie (刘杰), Zhang Sheng-Xia (张胜霞), Zhai Peng-Fei (翟鹏飞), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Guo Hang (郭航), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅). Chin. Phys. B, 2015, 24(8): 086103.
[8] Doping inhomogeneity and staging of ultra-thin graphite intercalation compound flakes probed by visible and near-infrared Raman spectroscopy
Lu Yan (鲁妍), Zhang Xin (张昕), Wu Jiang-Bin (吴江滨), Li Xiao-Li (李晓莉), Li Qiao-Qiao (厉巧巧), Tan Ping-Heng (谭平恒). Chin. Phys. B, 2015, 24(7): 077804.
[9] Raman spectrum study of graphite irradiated by swift heavy ions
Zhai Peng-Fei (翟鹏飞), Liu Jie (刘杰), Zeng Jian (曾健), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Ewing Rodney Charles. Chin. Phys. B, 2014, 23(12): 126105.
[10] Methane adsorption on graphite(0001) films: a first-principles study
He Man-Chao (何满潮), Zhao Jian (赵健). Chin. Phys. B, 2013, 22(1): 016802.
[11] Superior tribological properties of an amorphous carbon film with a graphite-like structure
Wang Yong-Jun(王永军), Li Hong-Xuan(李红轩), Ji Li(吉利), Liu Xiao-Hong(刘晓红), Wu Yan-Xia(吴艳霞), Zhou Hui-Di(周惠娣), and Chen Jian-Min(陈建敏) . Chin. Phys. B, 2012, 21(1): 016101.
[12] Adsorption of sodium ions and hydrated sodium ions on a hydrophobic graphite surface via cation-$\pi$ interactions
Shi Guo-Sheng(石国升), Wang Zhi-Gang(王志刚), Zhao Ji-Jun(赵纪军), Hu Jun(胡钧), and Fang Hai-Ping(方海平). Chin. Phys. B, 2011, 20(6): 068101.
[13] Field electron emission from bunchy flake-like nano-carbon films
Wang Xiao-Ping(王小平), Wang Li-Jun(王丽军), Duan Xin-Chao(段新超), Wang Long-Yang(王隆洋), Zhang Lei(张雷), Lv Cheng-Rui (吕承瑞), and Lei Tong(雷通). Chin. Phys. B, 2009, 18(5): 2078-2081.
[14] Structural, thermodynamic and electronic properties of zinc-blende AlN from first-principles calculations
Zhang Wei(张伟), Cheng Yan(程艳), Zhu Jun(朱俊), and Chen Xiang-Rong(陈向荣). Chin. Phys. B, 2009, 18(3): 1207-1213.
[15] Phase transition and thermodynamic properties of TiO2 from first-principles calculations
Yu Jing-Xin(于景新), Fu Min(傅敏), Ji Guang-Fu (姬广富), and Chen Xiang-Rong(陈向荣). Chin. Phys. B, 2009, 18(1): 269-274.
No Suggested Reading articles found!