Please wait a minute...
Chinese Physics, 2001, Vol. 10(8): 679-682    DOI: 10.1088/1009-1963/10/8/301
GENERAL   Next  

MASSIVE SCALAR PARTICLE IN THE GRAVITATIONAL FIELD OF A MICROCOSMIC BLACK HOLE

Wang Yong-jiu (王永久), Tang Zhi-ming (唐智明)
Institute of Physics, Hunan Normal University, Changsha 410081, China
Abstract  The finite motion of a massive scalar particle in the gravitational field of a microcosmic black hole with weak relativistic approximation is discussed. In the Schwarzschild field, using the condition for balance $\sigma=0$, we obtain the relation between the produced and captured amplitudes for particles. In the Kerr field we show that the attenuation depends on the moment of the black hole and the attenuation process becomes an exciting one when $\omega< md_h$.
Keywords:  Hawking effect      gravitation      microcosmic black hole  
Received:  25 July 2000      Revised:  02 April 2001      Accepted manuscript online: 
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  97.60.Lf (Black holes)  
  95.30.Sf (Relativity and gravitation)  
  04.60.-m (Quantum gravity)  
  04.20.Dw (Singularities and cosmic censorship)  
Fund: Project supported by the National Science Foundation of China (Grant No. 19975018).

Cite this article: 

Wang Yong-jiu (王永久), Tang Zhi-ming (唐智明) MASSIVE SCALAR PARTICLE IN THE GRAVITATIONAL FIELD OF A MICROCOSMIC BLACK HOLE 2001 Chinese Physics 10 679

[1] Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection
Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良). Chin. Phys. B, 2023, 32(2): 024212.
[2] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[3] A note on the definition of gravitational energy for quadratic curvature gravity via topological regularization
Meng-Liang Wang(王梦亮) and Jun-Jin Peng(彭俊金). Chin. Phys. B, 2020, 29(12): 120401.
[4] Gravitation induced shrinkage of Mercury’s orbit
Moxian Qian(钱莫闲), Xibin Li(李喜彬), and Yongjun Cao(曹永军)†. Chin. Phys. B, 2020, 29(10): 109501.
[5] Concept study of measuring gravitational constant using superconducting gravity gradiometer
Xing Bian(边星), Ho Jung Paik, Martin Vol Moody. Chin. Phys. B, 2018, 27(8): 080401.
[6] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[7] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
[8] Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal
Wei-Huang Wu(巫伟皇), Yuan Tian(田苑), Chao Xue(薛超), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2017, 26(4): 040401.
[9] Bianchi type I in f(T) gravitational theories
M I Wanas, G G L Nashed, O A Ibrahim. Chin. Phys. B, 2016, 25(5): 050401.
[10] Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period
Wang Gang (王刚), Ni Wei-Tou (倪维斗). Chin. Phys. B, 2015, 24(5): 059501.
[11] Improved routing strategy based on gravitational field theory
Song Hai-Quan (宋海权), Guo Jin (郭进). Chin. Phys. B, 2015, 24(10): 108901.
[12] Analysis of network traffic flow dynamics based on gravitational field theory
Liu Gang (刘刚), Li Yong-Shu (李永树), Zhang Xi-Ping (张喜平). Chin. Phys. B, 2013, 22(6): 068901.
[13] The stability of a shearing viscous star with an electromagnetic field
M. Sharif, M. Azama. Chin. Phys. B, 2013, 22(5): 050401.
[14] Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris
Wang Gang (王刚), Ni Wei-Tou (倪维斗). Chin. Phys. B, 2013, 22(4): 049501.
[15] Efficient and rapid accuracy estimation of the Earth's gravitational field from next-generation GOCE Follow-On by the analytical method
Zheng Wei (郑伟), Hsu Hou-Tse (许厚泽), Zhong Min (钟敏), Liu Cheng-Shu (刘成恕), Yun Mei-Juan (员美娟). Chin. Phys. B, 2013, 22(4): 049101.
No Suggested Reading articles found!