Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 050401    DOI: 10.1088/1674-1056/25/5/050401
GENERAL Prev   Next  

Bianchi type I in f(T) gravitational theories

M I Wanas1,4, G G L Nashed2,3,4, O A Ibrahim1,2
1. Astronomy Department, Faculty of Science, Cairo University, Cairo, Egypt;
2. Centre for Theoretical Physics, The British University in Egypt, El-Sherouk City, Egypt;
3. Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt;
4. Egyptian Relativity Group (ERG), Giza, Egypt
Abstract  A tetrad field that is homogeneous and anisotropic which contains two unknown functions A(t) and B(t) of cosmic time is applied to the field equations of f(t), where T is the torsion scalar, T=TμνρSμνρ. We calculate the equation of continuity and rewrite it as a product of two brackets, the first is a function of f(t) and the second is a function of the two unknowns A(t) and B(t). We use two different relations between the two unknown functions A(t) and B(t) in the second bracket to solve it. Both of these relations give constant scalar torsion and solutions coincide with the de Sitter one. So, another assumption related to the contents of the matter fields is postulated. This assumption enables us to drive a solution with a non-constant value of the scalar torsion and a form of f(t) which represents ΛCDM.
Keywords:  f(t) gravitational theory      Bianchi type I      special solutions  
Received:  26 June 2015      Revised:  19 January 2016      Accepted manuscript online: 
PACS:  04.50.Kd (Modified theories of gravity)  
Fund: Project supported by the Egyptian Ministry of Scientific Research (Project No. 24-2-12).
Corresponding Authors:  G G L Nashed     E-mail:  nashed@bue.edu.eg

Cite this article: 

M I Wanas, G G L Nashed, O A Ibrahim Bianchi type I in f(T) gravitational theories 2016 Chin. Phys. B 25 050401

[1] Cervantes-Cota J L and Smoot G 2011 AIP Conf. Proc. 1396 28
[2] Copeland J E, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
[3] Padmanabhan T 2003 Phys. Rept. 380 235
[4] Perlmutter S et al. 1998 Nature 391 51
[5] Rebolo R et al. 2004 Mon. Not. Roy. Astron. Soc. 353 747
[6] Reiess A G et al. 1998 Astron. J. 116 1009
[7] Tegmark M 2006 Phys. Rev. D 74 123507
[8] Bennett C L 2003 Astrophys. J. Suppl. 148 1
[9] Abazajian 2004 Phys. Rev. D 69 103501
[10] Hawking E 2003 Mon. Not. Roy. Astr. Soc. 346 78
[11] Verde L 2002 Mon. Not. R. Astron. Soc. 335 432
[12] Hinshaw G 2009 Astrophys. J. Suppl. 180 225
[13] Sharif M and Rani S 2011 Mod. Phys. Lett. A 26 1657
[14] Wanas M I 2012 Adv. High Energy Phys. 752613
[15] Viennot D J and Vigoureux M 2009 Int. J. Theor. Phys. 48 2246
[16] Bamba K, Capozziello S, Nojiri S and Odintsov S D 2012 Astrophys. Space Sci. 342 155
[17] Einstein A 1928 Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 217
[18] Wanas M I 2001 Stud. Cercet. Stiin. Ser. Mat. 10 297
[19] Youssef N L and Sid Ahmed A M 2007 Rep. Math. Phys. 60 39
[20] Nashed G G L 2008 Eur. Phys. J. C 54 291
[21] Nashed G G L 2011 Annalen. Phys. 523 450
[22] Sauer T 2006 Historia Mathematica 33 399
[23] Arcos H I and Pereira J G 2004 Int. J. Mod. Phys. D 13 2193
[24] Hayashi K and Shirafuji T 1979 Phys. Rev. D 24 3312
[25] Wanas M I, Nashed G G L and Nowaya A A 2012 Chin. Phys. B 21 049801
[26] Nashed G G L 2012 Chin. Phys. B 21 100401
[27] Nashed G G L 2013 Chin. Phys. B 22 020401
[28] Kleinert H 2010 Electron. J. Theor. Phys. 24 287
[29] So L L and Nester J M 2003 Proceedings of the Tenth Marcel Grossman Meeting on General Relativity, July 20-26, 2003, Rio de Janeiro, Brazil, p. 1498
[30] Hehl F W, McCrea J D, Mielke E W and Neeman Y 1995 Phy. Rept. 258 1
[31] Bengochea G R and Ferraro R 2009 Phys. Rev. D 79 124019
[32] Setare M R, Mohammadipour N 2012 JCAP 1211 30
[33] Izumi K and Ong Y C 2013 JCAP 06 29
[34] Bamba K and Odintsov S D 2014 arXiv:1402.7114 [gr-qc]
[35] Nashed G G L 2015 Indian J. Phys. 89 91
[36] Bamba K, Odintsov S D and Gómez D S 2013 Phys. Rev. D 88 084042
[37] Li B, Sotiriou T P and Barrow J D 2011 Phys. Rev. D 83 104017
[38] Rodrigues D C 2008 Phys. Rev. D 77 023534
[39] Koivisto T and Mota D F 2008 Astrophysical J. 679 1
[40] Mota D et al. 2007 Mon. Not. Roy. Astron. Soc. 382 793
[41] Nashed G G L 2014 Eur. Phys. J. Plus 129 188
[42] Weitzenbock R 1923 Invariance Theorie (Nordhoff: Gronin-gen)
[43] Li B, Sotiriou T P and Barrow J D 2011 Phys. Rev. D 83 104017
[44] Sotiriou T P, Li B and Barrow J D 2011 Phys. Rev. D 83 104030
[45] Li B, Sotiriou T P and Barrow J D 2011 Phys. Rev.D 83 064035
[46] Capozziello S, González P A, Saridakis E N and Vásquez 2013 JHEP 1302 039
[47] Dent J B, Dutta S and Saridakis E N 2011 JCAP 1101 009
[48] Cai Y F, Chen S H, Dent J B, Dutta S and Saridakis E N 2011 Class. Quantum Grav. 28 215011
[49] Aldrovandi R and Pereira J G An Introduction to Teleparallel Gravity Instituto de Fisica Teorica, UNSEP, Sao Paulo (http://www.ift.unesp.br/gcg/tele.pdf)
[50] Daouda M H, Rodrigues M E and Houndjo M J S 2012 Eur. Phys. J. C 72 1890
[51] Liu D and Reboucas M J 2012 Phys. Rev. D 86 083515
[52] Atazadeh K and Mousavi M 2013 Eur. Phys. J. C 73 2272
[53] Sharif M and Zubair M 2010 Astrophys. Space Sci. 330 399
[54] Karami K and Abdolmaleki A 2012 JCAP 04007
[55] Karami K, Asadzaden S, Abdolmaleki A and Safari Z 2013 Phys. Rev. D 88 084034
[56] Sharif M and Jawad A 2011 Astrophys. Space Sci. 331 257
[57] Sharif M and Waheed S 2012 Eur. Phys. J. C 72 1876
[58] Bali R and Kumawat P 2008 Phys. Lett. B 665 332
[59] Amirhashchi H 2011 Phys. Lett. B 697 429
[60] Pradhan A, Singh A K and Amirhashchi H 2012 Int. Jour. Theor. Phys. 51 3769
[61] Rodrigues M E, Salako G, Houndjo M J S and Tossa J 2014 Int. J. Mod. Phys. D 23 1450004
[62] Nesseris S, Basilakis S, Saridakis E N and Perivolaropoulos L 2013 Phys. Rev. D 88 103010
[63] Spergel D N et al. 2003 Atrophys. J. Suppl. 148 175
[64] Peiris H V et al. 2003 Astrophys. J. Suppl. 148 213
[65] Spergel D N et al. 2007 Astrophys. J. Suppl. 170 377
[66] Komatsu E 2009 Astrophys. J. Suppl. 180 330
[1] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[2] A note on the definition of gravitational energy for quadratic curvature gravity via topological regularization
Meng-Liang Wang(王梦亮) and Jun-Jin Peng(彭俊金). Chin. Phys. B, 2020, 29(12): 120401.
[3] Supergravity-induced interactions on thick branes
Nejat T. Yılmaz. Chin. Phys. B, 2014, 23(4): 040401.
[4] Conserved charges of Kerr–Ads spacetime using Poincaré gauge version
Gamal G. L. Nashed. Chin. Phys. B, 2013, 22(12): 120401.
[5] Spherically symmetric solution in higher-dimensional teleparallel equivalent of general relativity
Gamal G. L. Nashed. Chin. Phys. B, 2013, 22(2): 020401.
[6] Cosmological application on five-dimensional teleparallel theory equivalent to general relativity
Gamal G. L. Nashed. Chin. Phys. B, 2012, 21(10): 100401.
[7] Gravitational collapse with standard and dark energy in the teleparallel equivalent of general relativity
Gamal G. L. Nashed . Chin. Phys. B, 2012, 21(6): 060401.
[8] Energy, momentum and angular momentum in the dyadosphere of a charged spacetime in teleparallel equivalent of general relativity
Gamal G.L. Nashed . Chin. Phys. B, 2012, 21(3): 030401.
[9] Energy and momentum of general spherically symmetric frames on the regularizing teleparallelism
Gamal G.L. Nashed . Chin. Phys. B, 2012, 21(1): 010401.
[10] Energy and spatial momentum of charged rotating frames in tetrad gravity
Gamal G.L. Nashed . Chin. Phys. B, 2011, 20(11): 110401.
[11] Five-dimensional teleparallel theory equivalent to general relativity, the axially symmetric solution, energy and spatial momentum
Gamal G.L. Nashed . Chin. Phys. B, 2011, 20(11): 110402.
[12] Energy and momentum of rotating frames in tetrad gravity
Gamal G L Nashed . Chin. Phys. B, 2011, 20(10): 100402.
No Suggested Reading articles found!