Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120401    DOI: 10.1088/1674-1056/abb3e0
GENERAL Prev   Next  

A note on the definition of gravitational energy for quadratic curvature gravity via topological regularization

Meng-Liang Wang(王梦亮)1,† and Jun-Jin Peng(彭俊金)2,
1 Guizhou Key Laboratory in Physics and Related Areas, Guizhou University of Finance and Economics, Guiyang 550025, China; 2 School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China
Abstract  Within the framework of four-dimensional quadratic curvature gravities in the appearance of a negative cosmological constant, a definition for the gravitational energy of solutions with anti-de Sitter (AdS) asymptotics was put forward by Giribet et al. [Phys. Rev. D 98 044046 (2018)]. This was achieved by adding proper topological invariant terms to the gravity action to render the variation problem well-posed. We prove that the definition via the procedure of topological regularization can be covered by our previous work [Int. J. Mod. Phys. A 35 2050102 (2020)] in four dimensions. Motivated by this, we further generalize the results to generic diffeomorphism invariant theories of gravity in arbitrary even dimensions.
Keywords:  gravitational energy      higher-derivative gravity      asymptotically AdS gravity  
Received:  23 April 2020      Revised:  23 April 2020      Accepted manuscript online:  01 September 2020
PACS:  04.50.Kd (Modified theories of gravity)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  04.70.-s (Physics of black holes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11865006 and 11847152).
Corresponding Authors:  Corresponding author. E-mail: mengliang.wang@mail.gufe.edu.cn Corresponding author. E-mail: pengjjph@163.com   

Cite this article: 

Meng-Liang Wang(王梦亮) and Jun-Jin Peng(彭俊金) A note on the definition of gravitational energy for quadratic curvature gravity via topological regularization 2020 Chin. Phys. B 29 120401

[1] Giribet G, Miskovic O, Olea R and Rivera-Betancour D Phys. Rev. D 98 044046 DOI: 10.1103/PhysRevD.98.0440462018
[2] Aros R, Contreras M, Olea R, Troncoso R and Zanelli J Phys. Rev. Lett. 84 1647 DOI: 10.1103/PhysRevLett.84.16472000
[3] Iyer V and Wald R M Phys. Rev. D 50 846 DOI: 10.1103/PhysRevD.50.8461994
[4] Lee J and Wald R M J. Math. Phys. 31 725 DOI: 10.1063/1.5288011990
[5] Wald R M and Zoupas A Phys. Rev. D 61 084027 DOI: 10.1103/PhysRevD.61.0840272000
[6] Abbott L F and Deser S Nucl. Phys. B 195 76 DOI: 10.1016/0550-3213(82)90049-91982
[7] Abbott L F and Deser S Phys. Lett. B 116 259 DOI: 10.1016/0370-2693(82)90338-01982
[8] Deser S and Tekin B Phys. Rev. Lett. 89 101101 DOI: 10.1103/PhysRevLett.89.1011012002
[9] Deser S and Tekin B Phys. Rev. D 67 084009 DOI: 10.1103/PhysRevD.67.0840092003
[10] Peng J J and Liu H F Int. J. Mod. Phys. A 35 2050102 DOI: 10.1142/S0217751X2050102X2020
[11] Kim W, Kulkarni S and Yi S H Phys. Rev. Lett. 111 081101 DOI: 10.1103/PhysRevLett.111.0811012013
[12] Lovelock D J. Math. Phys. 12 498 DOI: 10.1063/1.16656131971
[13] Aros R, Contreras M, Olea R, Troncoso R and Zanelli J Phys. Rev. D 62 044002 DOI: 10.1103/PhysRevD.62.0440022000
No Suggested Reading articles found!