Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1999, Vol. 8(10): 721-732    DOI: 10.1088/1004-423X/8/10/001
GENERAL   Next  

CHEMICAL POTENTIAL QUANTIZATION AND BOSE-EINSTEIN CONDENSATION

Zheng Jiu-ren (郑久仁)
Center for Fundamental Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  In this paper, first of all, we proved if the ideal Bose gas with a finite volume and number of particles has a non-degenerate single-particle energy level $\varepsilon$n, the chemical potential $\mu$ can take the value $\mu$n = $\varepsilon$n and there is a phase transition temperature Tp,n, where n=0,1,2… Taking $\varepsilon$0≤$\varepsilon$n<$\varepsilon$n+1, then Tp,0Tp,n>Tp,n+1. When the temperature T>Tp,n or TTp,n+1, $\mu$≠$\varepsilon$n and the most probable occupation number Nn=0. In the temperature interval Tp,n≥ T>Tp,n+1, $\mu$ = $\varepsilon$n and 0≤Nn=N-$\sum$jNj<~supNn, where Nj  is the most probable occupation number in the degenerate level j. Thus, if the finite ideal Bose gas has some non-degenerate single-particle levels, there exists a characteristic temperature Tp=Tp,0. The chemical potential $\mu$ is quantized when TTp, and this leads to the creation of a macroscopic quantum state (pure state) or Bose-Einstein condensation phase. Tp=Tp,0 is a first-order phase transition point, Tp,n≠0 is a zero-order phase transition point. Next, we obtained a new expression of the most probable distribution of the finite ideal Bose gas. In this expression Nj is directly proportional to gj-1, where gjand Nj are, respectively, the degeneracy and the most probable occupation number in the degenerate level j. This property agrees with what chemical potential can be quantized if there is a non-degenerate level for the finite ideal Bose gas. Finally, using this expression, we defined a micro-partition function M, obtained the statistical expressions of some thermodynamical quantities.
Received:  14 September 1998      Revised:  25 February 1999      Accepted manuscript online: 
PACS:  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.30.Jp (Boson systems)  
  05.70.Fh (Phase transitions: general studies)  
  03.65.Vf (Phases: geometric; dynamic or topological)  

Cite this article: 

Zheng Jiu-ren (郑久仁) CHEMICAL POTENTIAL QUANTIZATION AND BOSE-EINSTEIN CONDENSATION 1999 Acta Physica Sinica (Overseas Edition) 8 721

[1] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[2] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[3] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[4] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[5] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[6] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[7] Bose-Einstein condensates under a non-Hermitian spin-orbit coupling
Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政). Chin. Phys. B, 2021, 30(6): 066702.
[8] Possible generation of π-condensation in a free space by collisions between photons and protons
Qi-Ren Zhang(张启仁). Chin. Phys. B, 2018, 27(12): 120306.
[9] Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions
An-Bang Wang(王安邦), Su Yi(易俗). Chin. Phys. B, 2018, 27(12): 120307.
[10] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[11] Matter wave interference of dilute Bose gases in the critical regime
Xuguang Yue(乐旭广), Shujuan Liu(刘淑娟), Biao Wu(吴飙), Hongwei Xiong(熊宏伟). Chin. Phys. B, 2017, 26(5): 050501.
[12] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[13] Two-color laser modulation of magnetic Feshbach resonances
Li Jian (李健), Liu Yong (刘勇), Huang Yin (黄寅), Cong Shu-Lin (丛书林). Chin. Phys. B, 2015, 24(8): 080308.
[14] Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling
Xie Wen-Fang (解文方), He Yan-Zhang (贺彦章), Bao Cheng-Guang (鲍诚光). Chin. Phys. B, 2015, 24(6): 060305.
[15] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin (王鑫), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(7): 070203.
No Suggested Reading articles found!