Abstract For the Melnikov theory of chaos, the second-order approximation is given. Applying the result to the dynamics system with quadratic nonlinear term, it is shown that the threshold of chaos depends on initial condition and can be greater than that of the Melnikov method. The first order variational equations of some nonlinear dynamical systems are all the second-order ordinary differential equations with hyperbolic cosine function, its solution is given.
Received: 16 July 1992
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.