FORMATION OF A BURIED LAYER OF ALUMINIUM NITRIDE BY HIGH DOSE N2+ IMPLANTATION INTO ALUMINIUM
LIN CHENG-LU (林成鲁)a, P.L.F.HEMMENTb, LI JIN-HUA (李金华)c, SHI ZUO-YU (施左宇)a, Y.LId, J.A.KILNERd
a Ion Beain Laboratory, Shanghai Institute of Metallurgy, Academia Sinica, Shanghai 200050, China ; b Department of Electronic and Electrical Engineering, University, of Surrey, Guildford, Surrey GU2 5XH, U.K.; c Changzhou Semiconductor Foctory, Changzhou 213001, China; d Department of Material, Imperial College, London SW7 2BP,U.K.
Abstract Aluminium films with various thickness between 700 nm and 1μm were deposited on Si (100) substrates, and 400 keV N2+ ions with doses ranging from 4.3×1017 to 1.8×1018 N/cm2 were implanted into the alu-minium films on silicon, Rutherford Backscattering (RBS) and channeling, secondary ion mass spectroscopy (SIMS), Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and spreading resistance probes (SRP) were used to characterize the synthesized aluminium nitride. The experiments showed that when the implantation dose was higher than a critical dose Nc, a buried stoichiometric AlN layer with high resistance was formed, while no apparent AlN XRD peaks in the as-implanted samples were observed; however, there was a strong AlN(100) diffraction peak appearing after annealing at 500 ℃ for 1h. The computer program, Implantation of Reactive Ions into Silicon (IRIS), has been modified and used to simulate the formation of the buried AlN layer as N2+ is implanted into aluminium. We find a good agreement between experimental measurements and IRIS simulation.
Received: 01 July 1992
Accepted manuscript online:
LIN CHENG-LU (林成鲁), P.L.F.HEMMENT, LI JIN-HUA (李金华), SHI ZUO-YU (施左宇), Y.LI, J.A.KILNER FORMATION OF A BURIED LAYER OF ALUMINIUM NITRIDE BY HIGH DOSE N2+ IMPLANTATION INTO ALUMINIUM 1993 Acta Physica Sinica (Overseas Edition) 2 376
First-principles study of He trapping in η-Fe2C Bing-Ling He(赫丙玲), Jin-Long Wang(王金龙), Zhi-Xue Tian(田之雪), Li-Juan Jiang(蒋利娟), Wei Song(宋薇), Bin Wang(王斌). Chin. Phys. B, 2016, 25(11): 116801.
Effect of the thickness of InGaN interlayer on a-plane GaN epilayer Wang Jian-Xia (王建霞), Wang Lian-Shan (汪连山), Zhang Qian (张谦), Meng Xiang-Yue (孟祥岳), Yang Shao-Yan (杨少延), Zhao Gui-Juan (赵桂娟), Li Hui-Jie (李辉杰), Wei Hong-Yuan (魏鸿源), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 026802.
Effects of V/Ⅲ ratio on a-plane GaN epilayers with an InGaN interlayer Wang Jian-Xia (王建霞), Wang Lian-Shan (汪连山), Yang Shao-Yan (杨少延), Li Hui-Jie (李辉杰), Zhao Gui-Juan (赵桂娟), Zhang Heng (张恒), Wei Hong-Yuan (魏鸿源), Jiao Chun-Mei (焦春美), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国). Chin. Phys. B, 2014, 23(2): 026801.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.