Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077505    DOI: 10.1088/1674-1056/ab8d9f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT

Masomeh Taghipour1, Mohammad Yousefi2, Reza Fazaeli3, Masoud Darvishganji4
1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran;
2 Department of Chemistry, Yadegar-e-Imam Khomeni(RAH) shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran;
3 Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran;
4 Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Abstract  The electronic and magnetic properties of strontium hexa-ferrite (SrFe12O19) are studied in pure state (SrFe12O19) and with dopant in the positions 2 and 3 of Fe atoms (SrGdFe11O19-I and SrGdFe11O19-Ⅱ, respectively) by utilizing a variety of the density functional theory (DFT) approaches including the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) and GGA plus Hubbard U parameter (GGA+U). The pure SrFe12O19 is a hard magnetic half-metal with an integer magnetic moment of 64.00μB, while using the GGA+U functional, the magnetic intensity increases, resulting in a magnetic semiconductor with a high integer magnetic moment of 120μB. By doping the Gd atom in the two different positions of Fe, the magnetic moment is increased to 71.68μB and 68.00μB, respectively. The magnetic moment increases and remains an integer; hence, SrGdFe11O19-Ⅱ can be very useful for application in magnetic memories. Moreover, applying the Hubbard parameter turns SrGdFe11O19-I and SrGdFe11O19-Ⅱ to magnetic semiconductors with a magnetic moment of 124μB, and the energy gap of both doped structures at spin down is found to be less than the pure case. By studying the electronic density diagram of the atoms of the crystal, it is found that the major effect to create magnetization in the pure case is due to the Fe atom. However, in the doped case, the elements Gd and Fe have the highest moment in the crystal respectively.
Keywords:  magnetic properties      density functional theory      half-metal      doping  
Received:  22 January 2020      Revised:  31 March 2020      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Corresponding Authors:  Mohammad Yousefi     E-mail:  myousefi50@hotmail.com

Cite this article: 

Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT 2020 Chin. Phys. B 29 077505

[1] Goldman A 1990 Modern Ferrite Technology (New York: Van Nostrand Reinhold) p. 69
[2] Shekhawat D, Singh A K and Roy P 2019 J. Mol. Struct. 1179 787
[3] Dong S, Lin C and Meng X 2019 J. Alloys Compd. 783 779
[4] Bhattacharya P, Dhibar S, Hatui G, Mandal A, Das T and Das C K 2014 Rsc Adv. 4 17039
[5] Feng G, Zhou W, Deng H, Yang M, Qing Y, Luo F, Zhu D, Huang Z, Zhou Y and Wang C 2019 J. Mater. Sci.: Mater. Electron. 30 12382
[6] Ren A, Qing M, Zhao N, Wang M, Gao G, Yang X, Zhang Z, Hu F, Rehman M U and Abbasi Q H 2018 IEEE Access 6 29551
[7] Xie T, Hu J, Yang J, Liu C, Xu L, Wang J, Peng Y, Liu S, Yin X and Lu Y 2019 Nanomaterials 9 735
[8] Abdollahi F, Yousefi M, Hekmati M, Khajehnezhad A, Afghahi S and Salman S 2019 J. Nanostruct. 9 579
[9] Ghezelbash S, Yousefi M, Hossainisadr M and Baghshahi S 2018 IEEE Trans. Magn. 54 1
[10] Liu C, Kan X, Liu X, Feng S, Hu J, Wang W, Rehman K M U and Shezad M 2020 Ceram. Int. 46 171
[11] Liu D, Gao S, Jin R, Wang F, Chu X, Gao T and Wang Y 2019 Chin. Phys. B 28 057503
[12] Mesdaghi S, Yousefi M and Mahdavian A 2019 Mater. Chem. Phys. 236 121786
[13] Veisi S S, Yousefi M, Amini M, Shakeri A and Bagherzadeh M 2019 J. Alloys Compd. 773 1187
[14] Pullar R C 2012 Prog. Mater. Sci. 57 1191
[15] Xia A, Du D, Li P and Sun Y 2011 J. Mater. Sci.: Mater. Electron. 22 223
[16] Niazi N, Farooq O, Tuz Zahra F and Anis-ur-Rehman M 2018 Trans. Tech. Publ., September 18-19, 2018 Switzerland, p. 195
[17] Yasmin N, Abdulsatar S, Hashim M, Zahid M, Gillani S F, Kalsoom A, Ashiq M N, Inam I, Safdar M and Mirza M 2019 J. Magn. Magn. Mater. 473 464
[18] Yasmin N, Iqbal M Z, Zahid M, Gillani S F, Ashiq M N, Inam I, Abdulsatar S, Safdar M and Mirza M 2019 Ceram. Int. 45 462
[19] Chen Z, Zhu Q K, Zhang S L, Zhang K W and Jiang Y 2019 Chin. Phys. B 28 087502
[20] Feng Y Q, Jin K J, Ge C, He X, Gu L, Yang Z Z, Guo H Z, Wan Q, He M and Lu H B 2016 Chin. Phys. Lett. 33 076801
[21] Kuila M, Hussian Z and Reddy V R 2019 Thin Solid Films 691 137593
[22] Guo M C, Liu W F, Wu P, Zhang H, Xu X L, Wang S Y and Rao G H 2015 Chin. Phys. Lett. 32 066101
[23] Lei S L, Li B, Huang J, Li Q X and Yang J L 2013 Chin. Phys. Lett. 30 077502
[24] Liu X F, Luo Z J, Zhou X, Wei J M, Wang Y, Guo X, Lv B and Ding Z 2019 Chin. Phys. B 28 086105
[25] Chen X, Liu L and Shen D 2019 Chin. Phys. B 28 077106
[26] Ye Q Y, Wang W J, Deng C C, Chen S Y, Zhang X Y, Wang Y J, Huang Q Y and Huang Z G 2018 Acta Phys. Sin. 68 107502
[27] Zhao G, Zhao L, Shen L, Zou J and Qiu L 2019 Chin. Phys. B 28 077505
[28] Feng M, Shao B, Lu Y and Zuo X 2014 J. Appl. Phys. 115 17D908
[29] Luo Q, Yang H, Guo P and Zhao J F 2019 Acta Phys. Sin. 68 169101
[30] Park J, Hong Y K, Lee W, Choi B C and Choi C J 2015 IEEE Magn. Lett. 7 1
[31] Chlan V, Kouřil K, Uličná K, Štěpánková H, Töpfer J and Seifert D 2015 Phys. Rev. B 92 125125
[32] Ono K, Okabayashi J, Mizuguchi M, Oshima M, Fujimori A and Akinaga H 2002 J. Applied Physics 91 8088
[33] Wang X, Khachai H, Khenata R, Yuan H, Wang L, Wang W, Bouhemadou A, Hao L, Dai X and Guo R 2017 Sci. Reports 7 1
[34] Akinaga H, Manago T and Shirai M 2000 Jpn. J. Appl. Phys. 39 L1118
[35] Alijani V, Winterlik J, Fecher G H, Naghavi S S and Felser C 2011 Phys. Rev. B 83 184428
[36] De Groot R, Mueller F, Van Engen P and Buschow K 1983 Phys. Rev. Lett. 50 2024
[37] Galanakis I, Ostanin S, Alouani M, Dreyssé H and Wills J 2000 Phys. Rev. B 61 4093
[38] Mizuguchi M, Akinaga H, Manago T, Ono K, Oshima M, Shirai M, Yuri M, Lin H, Hsieh H and Chen C 2002 J. Appl. Phys. 91 7917
[39] Balke B, Fecher G H, Kandpal H C, Felser C, Kobayashi K, Ikenaga E, Kim J J and Ueda S 2006 Phys. Rev. B 74 104405
[40] Boochani A, Nowrozi B, Khodadadi J, Solaymani S and Jalali-Asadabadi S 2017 J. Phys. Chem. C 121 3978
[41] Candan A, Uğur G, Charifi Z, Baaziz H and Ellialtıoğlu M 2013 J. Alloys Compounds 560 215
[42] Gabor M, Petrisor Jr T, Tiusan C, Hehn M and Petrisor T 2011 Phys. Rev. B 84 134413
[43] Karthik S, Rajanikanth A, Takahashi Y, Ohkubo T and Hono K 2007 Acta Materialia 55 3867
[44] Rai D, Shankar A, Ghimire M and Thapa R 2012 Physica B 407 3689
[45] Blaha P, Schwarz K, Sorantin P and Trichey S 1990 Comput. Phys. Commun. 59 399
[46] Schwarz K 2003 J. Solid State Chem. 176 319
[47] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[48] Lyogenkaya A, Grechnev G, Kotlyar O, Panfilov A and Gnezdilov V 2016 Ukr. J. Phys. 61 523
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[12] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[13] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[14] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[15] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
No Suggested Reading articles found!