Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087101    DOI: 10.1088/1674-1056/27/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dirac states from px,y orbitals in the buckled honeycomb structures: A tight-binding model and first-principles combined study

Shi-Ru Song(宋士儒)1,2, Ji-Hui Yang(杨吉辉)3, Shi-Xuan Du(杜世萱)1,2, Hong-Jun Gao(高鸿钧)1,2, Boris I Yakobson3
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA
Abstract  

Dirac states composed of px,y orbitals have been reported in many two-dimensional (2D) systems with honeycomb lattices recently. Their potential importance has aroused strong interest in a comprehensive understanding of such states. Here, we construct a four-band tight-binding model for the px,y-orbital Dirac states considering both the nearest neighbor hopping interactions and the lattice-buckling effect. We find that px,y-orbital Dirac states are accompanied with two additional narrow bands that are flat in the limit of vanishing π bonding, which is in agreement with previous studies. Most importantly, we analytically obtain the linear dispersion relationship between energy and momentum vector near the Dirac cone. We find that the Fermi velocity is determined not only by the hopping through π bonding but also by the hopping through σ bonding of px,y orbitals, which is in contrast to the case of pz-orbital Dirac states. Consequently, px,y-orbital Dirac states offer more flexible engineering, with the Fermi velocity being more sensitive to the changes of lattice constants and buckling angles, if strain is exerted. We further validate our tight-binding scheme by direct first-principles calculations of model-materials including hydrogenated monolayer Bi and Sb honeycomb lattices. Our work provides a more in-depth understanding of px,y-orbital Dirac states in honeycomb lattices, which is useful for the applications of this family of materials in nanoelectronics.

Keywords:  tight-binding      density functional theory      px,y-orbitals      buckled honeycomb structures  
Received:  09 April 2018      Revised:  19 April 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.23.An (Theories and models; localized states)  
Fund: 

Project supported by the National Key Research and Development Projects of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant No. 61390501), the Science Fund from the Chinese Academy of Sciences (Grant No. XDPB0601), and the US Army Research Office.

Corresponding Authors:  Ji-Hui Yang, Shi-Xuan Du     E-mail:  ji-hui.yang@rice.edu;sxdu@iphy.ac.cn

Cite this article: 

Shi-Ru Song(宋士儒), Ji-Hui Yang(杨吉辉), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧), Boris I Yakobson Dirac states from px,y orbitals in the buckled honeycomb structures: A tight-binding model and first-principles combined study 2018 Chin. Phys. B 27 087101

[1] Wehling T O, Black-Schaffer A M and Balatsky A V 2014 Adv. Phys. 63 1
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Wang X M and Gan X T 2017 Chin. Phys. B 26 034203
[4] Bliokh Y P, Freilikher V and Nori F 2013 Phys. Rev. B 87 245134
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[6] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[7] Wang J, Deng S, Liu Z and Liu Z 2015 Natl. Sci. Rev. 2 22
[8] Cahangirov S, Topsakal M, Aktürk E, Šahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[9] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[10] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[11] Li H, Fu H X and Meng S 2015 Chin. Phys. B 24 086102
[12] Voon L C L Y 2015 Chin. Phys. B 24 087309
[13] Meng L, Wang Y L, Zhang L Z, Du S X and Gao H J 2015 Chin. Phys. B 24 086803
[14] Guo Z X, Zhang Y Y, Xiang H, Gong X G and Oshiyama A 2015 Phys. Rev. B 92 201413
[15] Li P, Cao J and Guo Z X 2016 J. Mater. Chem. C 4 1736
[16] Li P, Li X, Zhao W, Chen H, Chen M X, Guo Z X, Feng J, Gong X G and MacDonald A H 2017 Nano Lett. 17 6195
[17] Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
[18] Wu C 2008 Phys. Rev. Lett. 100 200406
[19] Wu C and Das Sarma S 2008 Phys. Rev. B 77 235107
[20] Wu C 2008 Phys. Rev. Lett. 101 186807
[21] Zhang S, Hung H H and Wu C 2010 Phys. Rev. A 82 053618
[22] Lee W C, Wu C and Das Sarma S 2010 Phys. Rev. A 82 053611
[23] Zhang M, Hung H H, Zhang C and Wu C 2011 Phys. Rev. A 83 023615
[24] Wu S C, Shan G and Yan B 2014 Phys. Rev. Lett. 113 256401
[25] Wang J, Xu Y and Zhang S C 2014 Phys. Rev. B 90 054503
[26] Si C, Liu J, Xu Y, Wu J, Gu B L and Duan W 2014 Phys. Rev. B 89 115429
[27] Liu C C, Guan S, Song Z, Yang S A, Yang J and Yao Y 2014 Phys. Rev. B 90 085431
[28] Song Z, Liu C C, Yang J, Han J, Ye M, Fu B, Yang Y, Niu Q, Lu J and Yao Y 2014 NPG Asia Mater. 6 e147
[29] Wang Z F, Liu Z and Liu F 2013 Phys. Rev. Lett. 110 196801
[30] Wang Z F, Liu Z and Liu F 2013 Nat. Commun. 4 1471
[31] Liu Z, Wang Z F, Mei J W, Wu Y S and Liu F 2013 Phys. Rev. Lett. 110 106804
[32] Zhang G F, Li Y and Wu C 2014 Phys. Rev. B 90 075114
[33] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[34] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[35] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[38] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[39] Blöchl P E 1994 Phys. Rev. B 50 17953
[40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[43] Slater J C and Koster G F 1954 Phys. Rev. 94 1498
[44] Liu Z, Liu F and Wu Y S 2014 Chin. Phys. B 23 077308
[45] Lifshitz I M 1960 Sov. Phys. JETP 11 1130
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Spin—orbit stable dirac nodal line in monolayer B6O
Wen-Rong Liu(刘文荣), Liang Zhang(张亮), Xiao-Jing Dong(董晓晶), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(3): 037305.
No Suggested Reading articles found!