Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117308    DOI: 10.1088/1674-1056/25/11/117308
Special Issue: TOPICAL REVIEW — Topological electronic states
TOPICAL REVIEW—Topological electronic states Prev   Next  

Quantum anomalous Hall effect in real materials

Jiayong Zhang(张加永)1, Bao Zhao(赵宝)1, Tong Zhou(周通)1, Zhongqin Yang(杨中芹)1,2
1 State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Sciences(MOE) & Department of Physics, Fudan University, Shanghai 200433, China;
2 Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
Abstract  

Under a strong magnetic field, the quantum Hall (QH) effect can be observed in two-dimensional electronic gas systems. If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field, then it will give rise to a new quantum state, the quantum anomalous Hall (QAH) state. The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics. The realization of the QAH effect in real materials is of great significance. In this paper, we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures, including magnetically doped topological insulators, graphene-based systems, silicene-based systems, two-dimensional organometallic frameworks, quantum wells, and functionalized Sb(111) monolayers, etc. Our paper can help our readers to quickly grasp the recent developments in this field.

Keywords:  quantum anomalous Hall effect      topological insulator      ferromagnetic insulator      two-dimensional material  
Received:  25 February 2016      Revised:  08 May 2016      Accepted manuscript online: 
PACS:  73.43.-f (Quantum Hall effects)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  72.25.Dc (Spin polarized transport in semiconductors)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB921803), the National Natural Science Foundation of China (Grant No. 11574051), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1403400), and Fudan High-end Computing Center, China.

Corresponding Authors:  Zhongqin Yang     E-mail:  zyang@fudan.edu.cn

Cite this article: 

Jiayong Zhang(张加永), Bao Zhao(赵宝), Tong Zhou(周通), Zhongqin Yang(杨中芹) Quantum anomalous Hall effect in real materials 2016 Chin. Phys. B 25 117308

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] He K, Wang Y Y and Xue Q K 2014 Natl. Sci. Rev. 1 138
[4] He K, Ma X C, Chen X, Lu L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
[5] Gao C L, Qian D, Liu C H, Jia J F and Liu F 2013 Chin. Phys. B 22 067304
[6] Liu Z, Liu F and Wu Y S 2014 Chin. Phys. B 23 077308
[7] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[8] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[9] Liu C X, Qi X L, Dai Xi, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[10] Zhang H J, Xu Y, Wang J, Chang K and Zhang S C 2014 Phys. Rev. Lett. 112 216803
[11] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[12] Qiao Z H, Yang S A, Feng W X, Tse W K, Ding J, Yao Y G, Wang J and Niu Q 2010 Phys. Rev. B 82 161414(R)
[13] Qiao Z H, Jiang H, Li Z, Yao Y G and Niu Q 2012 Phys. Rev. B 85 115439
[14] Ding J, Qiao Z H, Feng W X, Yao Y G and Niu Q 2011 Phys. Rev. B 84 195444
[15] Zhang H B, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802
[16] Qiao Z H, Ren W, Chen H, Bellaiche L, Zhang Z Y, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404
[17] Zhang J Y, Zhao B, Yao Y G and Yang Z Q 2015 Sci. Rep. 5 10629
[18] Zhang J Y, Zhao B, Yao Y G and Yang Z Q 2015 Phys. Rev. B 92 165418
[19] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[20] Zhang J Y, Zhao B and Yang Z Q 2013 Phys. Rev. B 88 165422
[21] Zhang X L, Liu L F and Liu W M 2013 Sci. Rep. 3 2908
[22] Wang Z F, Liu Z and Liu F 2013 Phys. Rev. Lett. 110 196801
[23] Garrity K F and Vanderbilt D 2013 Phys. Rev. Lett. 110 116802
[24] Wu S C, Shan G C and Yan B H 2014 Phys. Rev. Lett. 113 256401
[25] Wang Y L, Wang Z J, Fang Z and Dai X 2015 Phys. Rev. B 91 125139
[26] Zhang H J, Wang J, Xu G, Xu Y and Zhang S C 2014 Phys. Rev. Lett. 112 096804
[27] Garrity K F and Vanderbilt D 2014 Phys. Rev. B 90 121103(R)
[28] Zhang H B, Huang H Q, Haule K and Vanderbilt D 2014 Phys. Rev. B 90 165143
[29] Dolui K, Ray S and Das T 2015 Phys. Rev. B 92 205133
[30] Xu G, Weng H M, Wang Z J, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[31] Cook A M and Paramekanti A 2014 Phys. Rev. Lett. 113 077203
[32] Wang F and Ran Y 2011 Phys. Rev. B 84 241103(R)
[33] Yang K Y, Zhu W G, Xiao Di, Okamoto S, Wang Z and Ran Y 2011 Phys. Rev. B 84 201104(R)
[34] Fang C, Gilbert M J and Bernevig B A 2014 Phy. Rev. Lett. 112 046801
[35] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[36] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731
[37] Kou X F, Guo S T, Fan Y B, Pan L, Lang M R, Jiang Y, Shao Q M, Nie T X, Murata K C, Tang J S, Wang Y, He L, Lee T K, LeeWL andWang K L 2014 Phys. Rev. Lett. 113 137201
[38] Chang C Z, Zhao W W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473
[39] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[40] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[41] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[42] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[43] Chang M C and Niu Q 1996 Phys. Rev. B 53 7010
[44] Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[45] Yao Y G, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
[46] Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C and Fabian J 2009 Phys. Rev. B 80 235431
[47] Ma D W, Li Z Y and Yang Z Q 2012 Carbon 50 297
[48] Eelbo T, Waśmiowska M, Thakur P, Gyamfi M, Sachs B, Wehling T O, Forti S, Starke U, Tieg C, Lichtenstein A I and Wiesendanger R 2013 Phys. Rev. Lett. 110 136804
[49] Chen H, Niu Q, Zhang Z Y and MacDonald A H 2013 Phys. Rev. B 87 144410
[50] Luo W D and Qi X L 2013 Phys. Rev. B 87 085431
[51] Geim A K and Grigorieva I V 2013 Nature 499 419
[52] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Castro Neto A H and Özyilmaz B 2014 Nat. Commun. 5 4875
[53] Carteaux V, Brunet D, Ouvrard G and André G 1995 J. Phys.:Condens. Matter 7 69
[54] Alegria L D, Ji H, Yao N, Clarke J J, Cava R J and Petta J R 2014 Appl. Phys. Lett. 105 053512
[55] Ji H, Stokes R A, Alegria L D, Blomberg E C, Tanatar M A, Reijnders A, Schoop L M, Liang T, Prozorov R, Burch K S, Ong N P, Petta J R and Cava R J 2013 J. Appl. Phys. 114 114907
[56] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[57] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[58] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[59] Liang Q F, Yu R, Zhou J and Hu X 2016 Phys. Rev. B 93 035135
[60] Xiao Di, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[61] Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H and Yao Y G 2014 Phys. Rev. Lett. 112 106802
[62] Liu C C, Zhou J J and Yao Y G 2015 Phys. Rev. B 91 165430
[63] Ezawa M 2013 Phys. Rev. B 87 155415
[64] Zhou T, Zhang J Y, Zhao B, Zhang H S and Yang Z Q 2015 Nano Lett. 15 5149
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[6] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[7] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[13] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[14] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[15] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
No Suggested Reading articles found!