Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 086302    DOI: 10.1088/1674-1056/25/8/086302
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, elastic, electronic, and thermodynamic properties of MgAgSb investigated by density functional theory

Jun-Fei Wang(王俊斐)1, Xiao-Nan Fu(富笑男)1, Xiao-Dong Zhang(张小东)1,2, Jun-Tao Wang(王俊涛)1, Xiao-Dong Li(李晓东)1, Zhen-Yi Jiang(姜振益)2
1 College of Science, Henan University of Technology, Zhengzhou 450001, China;
2 Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  The structural, elastic, electronic, and thermodynamic properties of thermoelectric material MgAgSb in γ, β, α phases are studied with first-principles calculations based on density functional theory. The optimized lattice constants accord well with the experimental data. According to the calculated total energy of the three phases, the phase transition order is determined from α to γ phase with cooling, which is in agreement with the experimental result. The physical properties such as elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor are also discussed and analyzed, which indicates that the three structures are mechanically stable and each has a ductile feature. The Debye temperature is deduced from the elastic properties. The total density of states (TDOS) and partial density of states (PDOS) of the three phases are investigated. The TDOS results show that the γ phase is most stable with a pseudogap near the Fermi level, and the PDOS analysis indicates that the conduction band of the three phases is composed mostly of Mg-3s, Ag-4d, and Sb-5p. In addition, the changes of the free energy, entropy, specific heat, thermal expansion of γ-MgAgSb with temperature are obtained successfully. The obtained results above are important parameters for further experimental and theoretical tuning of doped MgAgSb as a thermoelectric material at high temperature.
Keywords:  first-principles      elastic properties      electronic structure      thermodynamic properties  
Received:  23 January 2016      Revised:  09 April 2016      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  62.20.D- (Elasticity)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  05.70.-a (Thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504088), the Fund from Henan University of Technology, China (Grant Nos. 2014YWQN08 and 2013JCYJ12), the Natural Science Fund from the Henan Provincial Education Department, China (Grant No. 16A140027), the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2013JQ1018 and 15JK1759), and the Science Foundation of Northwest University of China (Grant No. 14NW23).
Corresponding Authors:  Xiao-Dong Zhang     E-mail:  zhangxiaodong@nwu.edu.cn

Cite this article: 

Jun-Fei Wang(王俊斐), Xiao-Nan Fu(富笑男), Xiao-Dong Zhang(张小东), Jun-Tao Wang(王俊涛), Xiao-Dong Li(李晓东), Zhen-Yi Jiang(姜振益) Structural, elastic, electronic, and thermodynamic properties of MgAgSb investigated by density functional theory 2016 Chin. Phys. B 25 086302

[1] Galanakis I, Mavropoulos P and Dederichs P H 2006 J. Phys. D:Appl. Phys. 39 765
[2] Nanda B R K and Dasgupta I 2003 J. Phys.:Condens. Matter 15 7307
[3] Yang J, Li H, Wu T, Zhang W, Chen L and Yang J 2008 Adv. Funct. Mater. 18 2880
[4] Riffat S B and Ma X 2003 Appl. Therm. Eng. 23 913e935
[5] Aliev F G, Kozyrkov V V, Moshchalkov V V, Scolozdra R V, Durczewski K and Für Z 1990 Physica B:Condens. Matter 80 353e357
[6] Ogut S and Rabe K M 1995 Phys. Rev. B 51 66627e10453
[7] Sawai W A, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, Hasan M Z and Bansil A 2010 Phys. Rev. B 82 125208
[8] Kirkham M J, Santos A M and Rawn C J 2012 Phys. Rev. B 85 144120.
[9] Ying P J, Liu X H, Fu C G, Yue X Q, Xie H H, Zhao X B, Zhang W Q and Zhu T J 2015 Chem. Mater. 27 909
[10] Zhao H, Sui J, Tang Z, Lan Y, Jie Q, Kraemer D, McEnaney K, Guloy A, Chen G and Ren Z 2014 Nano Energy 7 97
[11] Kraemer D, Sui J, McEnaney K, Zhao H, Jie Q, Ren Z F and Chen G 2015 Energy Environ. Sci. 8 1299
[12] Shuai J, Kim H S, Lan Y, Chen S, Liu Y, Zhao H, Sui J and Ren Z 2015 Nano Energy 11 640
[13] Frost B R T and Raynor G V 1950 Proc. R. Soc. London A 203 132
[14] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Blöchl P E 1994 Phys. Rev. B 50 17953
[17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[18] Roza A O, Perez D A and Luanea V 2011 Comput. Phys. Commun. 182 2232
[19] Miao N H and Ghosez P 2015 J. Phys. Chem. C 119 14017
[20] Yu Y, Chen C L, Zhao G D, Zhen X L and Zhu X H 2014 Chin. Phys. B 23 106301
[21] Chen B S, Li Y Z, Guan X Y, Wang C, Wang C X and Gao Z Y 2015 Comput. Mater. Sci. 105 66
[22] Zafar M, Ahmed S, Shakil M, Choudhary M A and Mahmood K 2015 Chin. Phys. B 24 076106
[23] Bouhemadou A, Zerarga F, Almuhayya A and Omran S B 2011 Mater. Res. Bull. 46 2252
[24] Voigt W 1928 Lehrbuch der Kristallphysik, Teubner, Leipzig
[25] Reuss A 1929 "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitaettsbediengung fuer EinKristalle", Z. Angew. Math. Mech. 9 49
[26] Wang J F, Gao A H, Chen W Z, Zhang X D, Zhou B and Jiang Z Y 2013 J. Magn. Magn. Mater. 333 93
[27] Duan J, Zhou T, Zhang L, Du J G, Jiang G and Wang H B 2015 Chin. Phys. B 24 096201
[28] Pugh S F 1954 Philos. Mag. 45 823
[29] Guechi A, Merabet A and Chegaar M 2015 J. Alloys Compd. 623 219
[30] Lu Q, Zhang H Y, Chen Y, Chen X Y and Ji G F 2016 Chin. Phys. B 25 026401
[31] Zhang W, Chen Q Y, Zeng Z Y and Cai L C 2015 Chin. Phys. B 24 107101
[32] Li D D, Zhao H Z, Li S M, Wei B P, Shuai J and Shi C L 2015 Adv. Funct. Mater. 25 12
[33] Mehl M J, Osburn J E, Papaconstantopoulos D A and Klein B M 1999 Phys. Rev. B 41 10311
[34] Feng S Q, Li J Y and Cheng X L 2015 Chin. Phys. B 24 036301
[35] Daho S, Ameri M, Douri Y A, Bensaid D, Varshney D and Ameri I 2016 Mater. Sci. Semicond. Process. 41 102
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
No Suggested Reading articles found!