Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 124208    DOI: 10.1088/1674-1056/24/12/124208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable negative-index photonic crystals using colloidal magnetic fluids

Geng Tao (耿滔), Wang Xin (王新), Wang Yan (王岩), Dong Xiang-Mei (董祥美)
Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  The model of using colloidal magnetic fluid to build tunable negative-index photonic crystal is established. The effective permittivity εe and permeability μe of the two-dimensional photonic crystal are investigated in detail. For transverse magnetic polarization, both ε e and μe exhibit a Lorentz-type anomalous dispersion, leading to a region where εe and μe are simultaneously negative. Then, considering a practical case, in which the thickness of photonic crystal is finite, the band structures for odd modes are calculated by the plane wave expansion method and the finite-difference time-domain method. The results suggest that reducing the external magnetic field strength or slab thickness will weaken the periodic modulation strength of the photonic crystal. Simulation results prove that the negative-index can be tuned by varying the external magnetic field strength or the slab thickness. The work presented in this paper gives a guideline for realizing the flat photonic crystal lens with tunable properties at optical frequencies, which may have potential applications in tunable near-field imaging systems.
Keywords:  tunable negative-index      photonic crystals      colloidal magnetic fluids  
Received:  10 April 2015      Revised:  01 June 2015      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB352001), the Shanghai Rising-Star Program, China (Grant No. 12QA1402300), the China Scholarship Council (CSC) Program, and the Basic Research Program of Shanghai, China (Grant No. 14ZR1428500).
Corresponding Authors:  Geng Tao     E-mail:  Tao_Geng@hotmail.com

Cite this article: 

Geng Tao (耿滔), Wang Xin (王新), Wang Yan (王岩), Dong Xiang-Mei (董祥美) Tunable negative-index photonic crystals using colloidal magnetic fluids 2015 Chin. Phys. B 24 124208

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Jin L, Zhu Q Y, Fu Y Q and Yu W Q 2013 Chin. Phys. B 22 104101
[3] Xu T, Agrawal A, Abashin M, Chau K J and Lezec H J 2013 Nature 497 470
[4] Li Y N, Gu P F, Zhang J L, Li M Y and Liu X 2006 Acta Phys. Sin. 55 4918 (in Chinese)
[5] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2005 Phys. Rev. Lett. 95 137404
[6] Fang Y T and Shen T G 2005 Chin. Phys. 14 949
[7] Zhao H, Zhou J, Kang L and Zhao Q 2009 Opt. Express 17 13373
[8] Zhao H, Li B, Zhou J, Kang L, Zhao Q and Li W 2011 Opt. Express 19 15679
[9] Liu S, Chen W, Du J, Lin Z, Chui S T and Chan C T 2008 Phys. Rev. Lett. 101 157407
[10] Liu Z Q, Feng T H, Dai Q F, Wu L J and Lan S 2009 Chin. Phys. B 18 179
[11] Ge J and Yin Y 2008 Adv. Mater. 20 3485
[12] Kim H, Ge J, Kim J, Choi S, Lee H, Park W, Yin Y and Kwon S 2009 Nat. Photon. 3 534
[13] Gao Y, Huang J P, Liu Y M, Gao L, Yu K W and Zhang X 2010 Phys. Rev. Lett. 104 034501
[14] Fang A, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 245127
[15] Yang S Y, Horng H E, Hong C Y, Yang H C, Chou M C, Pan C T and Chao Y H 2003 J. Appl. Phys. 93 345
[16] Horng H E, Yang S Y, Lee S L, Hong C Y and Yang H C 2001 Appl. Phys. Lett. 79 350
[17] Wen W, Zhang L and Sheng P 2000 Phys. Rev. Lett. 85 5464
[18] Horng H E, Hong C Y, Yang S Y and Yang H C 2003 Appl. Phys. Lett. 82 2434
[19] Yang S Y, Chieh J J, Horng H E, Hong C Y and Yang H C 2004 Appl. Phys. Lett. 84 5204
[20] Buchenau U and Müller I 1972 Solid State Commun. 11 1291
[21] Notomi M 2000 Phys. Rev. B 62 10696
[22] Ge J, Hu Y and Yin Y 2000 Angewandte Chemie 119 7572
[23] Yang S Y, Horng H E, Shiao Y T, Hong C Y and Yang H C 2006 J. Magn. Magn. Mater. 307 43
[24] Wu Y, Li J, Zhang Z Q and Chan C T 2006 Phys. Rev. B 74 085111
[25] Jin J, Liu S, Lin Z and Chui S T 2009 Phys. Rev. B 80 115101
[26] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2006 Opt. Express 14 6778
[27] Chern R L and Chen Y T 2009 Phys. Rev. B 80 075118
[28] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[29] Shi P, Huang K and Li Y 2012 Opt. Lett. 37 359
[30] Johnson S G, Fan S, Villeneuve P R, Joannopoulos J D and Kolodziejski L A 1999 Phys. Rev. B 60 5751
[31] Kim D H, Cho C O, Roh Y G, Jeon H, Park Y S, Cho J, Im J S, Sone C, Park Y, Choi W J and Park Q H 2005 Appl. Phys. Lett. 87 203508
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[3] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[4] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[5] Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid
Lan-Lan Zhang(张兰兰), Wei Liu(刘伟), Ping Li(李萍), Xi Yang(杨曦), Xu Cao(曹旭). Chin. Phys. B, 2017, 26(6): 064209.
[6] Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals
Si-Qi Zhang(张斯淇), Jing-Bin Lu(陆景彬), Yu Liang(梁禺), Ji Ma(马季), Hong Li(李宏), Xue Li(李雪), Xiao-Jing Liu(刘晓静), Xiang-Yao Wu(吴向尧), Xiang-Dong Meng(孟祥东). Chin. Phys. B, 2017, 26(2): 024208.
[7] Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals
Liang Hong (梁红), Liu Huan (刘欢), Zhang Qiang (张强), Fu Shu-Fang (付淑芳), Zhou Sheng (周胜), Wang Xuan-Zhang (王选章). Chin. Phys. B, 2015, 24(6): 067807.
[8] Tunability of graded negative index-based photonic crystal lenses for fine focusing
Jin Lei (晋蕾), Zhu Qing-Yi (朱清溢), Fu Yong-Qi (付永启). Chin. Phys. B, 2013, 22(9): 094102.
[9] Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation
Wang Da (王达), Cui Kai-Yu (崔开宇), Feng Xue (冯雪), Huang Yi-Dong (黄翊东), Li Yong-Zhuo (李永卓), Liu Fang (刘仿), Zhang Wei (张巍). Chin. Phys. B, 2013, 22(9): 094209.
[10] Theoretical study on the photonic band gap in one-dimensional photonic crystals with graded multilayer structure
Fan Chun-Zhen (范春珍), Wang Jun-Qiao (王俊俏), He Jin-Na (何金娜), Ding Pei (丁佩), Liang Er-Jun (梁二军). Chin. Phys. B, 2013, 22(7): 074211.
[11] The single-longitudinal-mode operation of a ridge waveguide laser based on two-dimensional photonic crystals
Wang Hua-Yong (王华勇), Xu Xing-Sheng (许兴胜). Chin. Phys. B, 2013, 22(5): 054205.
[12] Flat lenses constructed by graded negative index-based photonic crystals with tuned configurations
Jin Lei (晋蕾), Zhu Qing-Yi (朱清溢), Fu Yong-Qi (付永启), Yu Wei-Xing (鱼卫星). Chin. Phys. B, 2013, 22(10): 104101.
[13] A novel optical beam splitter based on photonic crystal with hybrid lattices
Zhu Qing-Yi(朱清溢), Fu Yong-Qi(付永启), Hu De-Qing(胡德清), and Zhang Zhi-Min(章志敏) . Chin. Phys. B, 2012, 21(6): 064220.
[14] Spontaneous emission from an atom in a photonic crystal with two coherent bands
Huang Xian-Shan(黄仙山), Liu Hai-Lian(刘海莲), and Wang Dong(王东) . Chin. Phys. B, 2012, 21(5): 054218.
[15] Phase control of spontaneous emission from a double-band photonic crystals
Zhang Ke(张珂), Zhu Yan-Ping(祝艳萍), Jiang Li(姜丽), and Zhang Han-Zhuang(张汉壮). Chin. Phys. B, 2010, 19(5): 054206.
No Suggested Reading articles found!