Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046101    DOI: 10.1088/1674-1056/23/4/046101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments

Amani Tahata, Jordi Martia, Ali Khwaldehb, Kaher Tahatc
a Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5,North Campus UPC, 08034 Barcelona, Catalonia, Spain;
b Department of Computer Engineering, Faculty of Engineering, Philadelphia University, Amman, Jordan;
c Department of Graduate Business Studies, Waterford Institute of Technology, Main Campus Cork Road, Waterford, Ireland
Abstract  In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer‘occurred’and transfer‘not occurred’. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.
Keywords:  pattern recognition      proton transfer      chart pattern      data mining      artificial neural network      empirical valence bond  
Received:  23 June 2013      Revised:  03 October 2013      Accepted manuscript online: 
PACS:  61.20.Qg (Structure of associated liquids: electrolytes, molten salts, etc.)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Corresponding Authors:  Amani Tahat     E-mail:  amanitahat@yahoo.com
About author:  61.20.Qg; 31.15.xv; 07.05.Mh

Cite this article: 

Amani Tahat, Jordi Marti, Ali Khwaldeh, Kaher Tahat Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments 2014 Chin. Phys. B 23 046101

[1] Jain A, Duin R and Mao J 2000 IEEE Trans. PAMI 22 4
[2] Neimark Y 2003 Mathematical Models in Natural Science and Engineering (Berlin: Springer) p. 25
[3] Callan R 1999 Essence of Neural Networks (London: Prentice Hall Europe) p. 223
[4] Abreu P and Lesiak T 1992 Phys. Lett. B 295 382
[5] Denby B 1999 Comput. Phys. Commun. 119 219
[6] Abachi S, Abbott B, Abolins M, Acharya,B, Adam I, Adams D, Adams M, Ahn S, Aihara H, Alves G, Amidi E, Amos N, Anderson E, Astur R, Baarmand M, Baden A, Balamurali V and Ba J 1997 Phys. Rev. Lett. 79 1197
[7] Abbott B, Abolins M, Bannanje Sripath Acharya and Adam I 1997 Phys. Rev. Lett. 79 4321
[8] Zhu M H, Liu L G, Xu A A and Ma T 2008 Chin. Phys. Lett. 25 3942
[9] Zhou Z B, Wang S F and Luo J 2005 Chin. Phys. Lett. 22 1614
[10] Gao X F, Wan B K and Yang C M 2003 Chin. Phys. Lett. 20 774
[11] Yu Q Z, Li Y T, Zhang J, Zheng J, Li H M, Peng X Y and Li K 2004 Chin. Phys. Lett. 21 874
[12] Sun L S, Kang X Y, Lin L X and Zhang Q 2011 Chin. Phys. B 20 120507
[13] Amato F, López1A, Peña-Méndez E, Vañhara P, Hamp A and Havel J 2013 J. Appl. Biomed. 11 47
[14] Hynes J, Klinman J, Limbach H and Schowen R 2007 Hydrogen Transfer Reactions (Weinheim: Wiley VCH) p. 50
[15] Gorb L and Leszczynski J 1998 J. Am. Chem. Soc. 120 5024
[16] Banerjee C, Ghatak C, Mandal S, Ghosh S, Kuchlyan J and Sarkar N 2013 J. Phys. Chem. B 117 6906
[17] Lukeman M and Wan P 2001 Chem. Commun. 11 1004
[18] Ma J, Zhao J, Yang P, Huang D, Zhang C and Li Q 2012 Chem. Commun. 48 9720
[19] Golan A, Bravaya K, Kudirka R, Kostko O, Leone S, Krylov A and Ahmed M 2012 Nat. Chem. 4 323
[20] Ramette R 1989 J. Chem. Educ. 66 830
[21] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[22] Kornyshev A, Kuznetsov A, Spohr E and Ulstrup J 2003 J. Phys. Chem. B 107 3351
[23] Cuma M, Schmitt U and Voth G 2000 Chem. Phys. 258 187
[24] Warshel A and Weiss R 1980 J. Am. Chem. Soc. 102 6218
[25] Jelen B 2011 Charts and Graphs: Microsoft Excel 2010, (Indiana: Indianapolis) p. 25
[26] Zundel G and Metzger H Z 1968 Phys. Chem. 244 456
[27] Eigen M and de Maeyer L 1958 Proc. Royal Soc. London A 247 505
[28] Duda R, Hart P and Stork D 2001 Pattern Classification (New York: John Wiley and Sons) p. 72
[29] Tahat A, Marti J, Tahat K and Khwaldeh A 2013 Chin. Phys. B 22 048901
[30] Bishop C M 1995 Neural Networks for Pattern Recognition (Oxford: Oxford University Press) p. 80
[31] Ripley B 1996 Pattern Recognition and Neural Networks (Cambridge: Cambridge University press) p. 200
[32] Haykim S 1994 Neural Networks: A Comprehensive Foundation (New York: Macmillan College Publishing Company and Maxwell Macmillan International) p. 113
[33] Christopher M 1995 Neural Networks for Pattern Recognition (Oxford: Clarendon Press) p. 301
[34] Schalkoff R 1992 Pattern Recognition: Statistical, Syntactic and Neural Approaches (New York: John Wiley and Sons) p. 140
[35] Aleksander I and Morton H 1995 An Introduction to Neural Computing (London: International Thomson Computer Press) p. 97
[36] Lippmann P 1987 IEEE ASSP Magazine 3 4
[37] Laria D, Martí J and Guárdia E 2004 J. Am. Chem. Soc. 126 2125
[38] Chandler D 1987 Introduction to Modern Statistical Physics (New York: Oxford University Press) p. 200
[39] Semino R and Laria D 2012 Chem. Phys. 136 194503
[40] Chitra S
[41] Freeman J and Skapura D 1991 Neural Networks: Algorithms, Applications and Programming Techniques (Redwood City: Addison Wesley Longman) p. 300
[42] Karray F and de Silva C 2004 Soft Computing and Intelligent Systems Design – Theory, Tools and Applications (Redwood City: Addison Wesley) p. 43
[43] Rezaei M and Mohseni M 2013 J. Fuel Cell Sci. Technol. 10 035001
[44] Fatemi M H and Moghaddam M R 2012 J. Mass Spectrom. 47 574
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[4] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[5] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[6] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[7] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[8] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[9] Quantum nature of proton transferring across one-dimensional potential fields
Cheng Bi(毕成), Quan Chen (陈泉), Wei Li(李伟), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(4): 046601.
[10] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[11] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[12] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[13] Artificial neural network potential for gold clusters
Ling-Zhi Cao(曹凌志), Peng-Ju Wang(王鹏举), Lin-Wei Sai(赛琳伟), Jie Fu(付洁), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2020, 29(11): 117304.
[14] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[15] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
No Suggested Reading articles found!