Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 016104    DOI: 10.1088/1674-1056/23/1/016104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structure of Lennard–Jones nanowires encapsulated by carbon nanotubes

Wu Wen-Qian (吴雯倩)a, Tian Ming-Li (田明丽)b, Chen Hang-Yan (陈航燕)a, Yuan Qing-Hong (袁清红)a, Sun De-Yan (孙得彦)a
a Department of Physics, East China Normal University, Shanghai 200062, China;
b College of Electric and Information Engineering, Pingdingshan University, Pingdingshan 467000, China
Abstract  Molecular dynamics simulations have been performed to investigate the structures of Lennard–Jones (LJ) nanowires (NWs) encapsulated in carbon nanotubes (CNTs). We find that the structures of NWs in a small CNT only adopt multi-shell motifs, while the structures of NWs in a larger CNT tend to adopt various motifs. Among these structures, three of them have not been reported previously. The phase boundaries among these structures are obtained regarding filling fractions, as well as the interaction between NWs and CNTs.
Keywords:  structure of nanowires      carbon nanotubes      molecular dynamics simulation  
Received:  08 August 2013      Revised:  23 August 2013      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174079), the National Basic Research Program of China (Grant No. 2012CB921401), and the Shuguang and Innovation Program of Shanghai Education Committee, China.
Corresponding Authors:  Sun De-Yan     E-mail:  dysun@phy.ecun.edu.cn

Cite this article: 

Wu Wen-Qian (吴雯倩), Tian Ming-Li (田明丽), Chen Hang-Yan (陈航燕), Yuan Qing-Hong (袁清红), Sun De-Yan (孙得彦) Structure of Lennard–Jones nanowires encapsulated by carbon nanotubes 2014 Chin. Phys. B 23 016104

[1] Pan X, Fan Z, Chen W, Ding Y, Luo H and Bao X 2007 Nature 6 507
[2] Serp P, Corrias M and Kalck P 2003 Appl. Catal. A: Gen. 253 337
[3] Li W, Liang C, Qiu J, Zhou W, Han H, Wei Z, Sun G and Xin Q 2002 Carbon 40 787
[4] Zheng Q, Zhou W, Qian W, Xiang R, Huang J, Wang D and Wei F 2007 J. Phys. Chem. C 111 14638
[5] Yang Y, Gupta M C, Dudley K L and Lawrence R W 2005 Nano Lett. 5 2131
[6] Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F, Guo T and Chen Y 2007 Carbon 45 821
[7] Sathiya M, Prakash A S, Ramesha K, Tarascon J M and Shukla A K 2011 J. Am. Chem. Soc. 133 16291
[8] Yeow J T W and She J P M 2006 Nanotechnology 17 5441
[9] Kang J W and Hwang H J 2004 J. Appl. Phys. 96 3900
[10] Kang J W, Choi Y G, Lee J H, Kwon O K and Hwang H J 2008 Mol. Simulat. 34 829
[11] Zhao Z F, Li X H, Wen L, Guo H M, Bu S J and Wang Y Q 2012 Chin. Phys. Lett. 29 118103
[12] Liu X, Huang D L, Wu L L, Zhang X T and Zhang W G 2011 Chin. Phys. B 20 078101
[13] Zhang L N, He J, Zhou W, Chen L and Xu Y W 2010 Chin. Phys. B 19 047306
[14] Li D Z and Zhu R 2013 Chin. Phys. B 22 018502
[15] Wang B, Wang G and Zhao J 2002 Phys. Rev. B 65 235406
[16] Zhuo G and Gao Q 2005 Solid State Commun. 136 32
[17] Wang B, Yin S, Wang G, Buldum A and Zhao J 2001 Phys. Rev. Lett. 86 2046
[18] Hui L, Wang B, Wang J and Wang G 2004 J. Chem. Phys. 121 8990
[19] Shao J, Yang C, Zhu X and Lu X 2010 J. Phys. Chem. C 114 2896
[20] Arcidiacono S, Walther J H, Poulikakos D, Passerone D and Koumoutsakos P 2005 Phys. Rev. Lett. 94 105502
[21] Kang J W and Hwang H J 2004 Physica B 351 144
[22] Kang J W and Hwang H J 2004 Nanotechnology 15 115
[23] Wang S, Zhang Y, Chen L, Zhang J and Xu K 2011 Phys. Stat. Sol. (a) 1 97
[24] Zhu B, Wang Y, Pan Z, Cheng D and Hou M 2010 Eur. Phys. J. D 57 219
[25] Takagi D, Homma Y, Hibino H, Suzuki S and Kobayashi Y 2006 Nano Lett. 6 2642
[26] Díaz M, Costa-Krämer J L, Medina E, Hasmy A and Serena P A 2003 Nanotechnology 14 113
[27] Qiao Z J, Chen G D, Ye H G, Wu Y L, Niu H B and Zhu Y Z 2012 Chin. Phys. B 21 087101
[28] Choi W Y, Kang J W and Hwang H J 2003 Phys. Rev. B 68 193405
[29] Xiao Y, Zhu B, Guo S, Wang Y and Pan Z 2009 Nucl. Instrum. Meth. Phys. Res. B 267 3067
[30] Gou J Y and Xu C X 2011 Appl. Phys. A 102 333
[31] Li K, He H, Xu B and Pan B 2009 J. Appl. Phys. 105 054308
[32] Guo Y, Kong Y, Guo W and Gao H 2004 J. Comput. Theor. Nanosci. 1 93
[33] Yang W, Nelissen K, Kong M, Zeng Z and Peeters F M 2009 Phys. Rev. E 79 041406
[34] Piacente G, Schweigert I V, Betouras J J and Peeters F M 2004 Phys. Rev. B 69 045324
[35] Zhang X Q, Li H and Liew K M 2007 J. Appl. Phys. 102 073709
[36] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[37] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.: Condens. Matter 14 783
[38] Guo Y and Guo W 2006 Nanotechnology 17 4726
[39] Broughton J Q and Gilmer G H 1983 J. Chem. Phys. 79 5095
[40] Cleri F, Yip S, Wolf D and Phillpot S R 1997 Phys. Rev. Lett. 79 1309
[41] Rappe A K, Casewit C J, Colwell K S, Goddard W A and Skiff III W M 1992 J. Am. Chem. Soc. 114 10024
[42] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon)
[43] Plimpton S J 1995 J. Comput. Phys. 117 1
[44] Nose S 1984 J. Chem. Phys. 81 511
[45] Hoover W G 1985 Phys. Rev. A 31 1695
[46] Kondo Y and Takayanagi K 2000 Science 289 606
[47] Kang J W and Hwang H J 2002 J. Phys.: Condens. Matter 14 2629
[48] He Y, Li H, Li Y, Zhang K, Jiang Y and Bian X 2013 Phys. Chem. Chem. Phys. 15 9163
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[8] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[9] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[10] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[11] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[12] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[13] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[14] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[15] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
No Suggested Reading articles found!