Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100501    DOI: 10.1088/1674-1056/22/10/100501
GENERAL Prev   Next  

Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice

Cui Guo-Dong (崔国栋)a b, Sun Jian-Fang (孙剑芳)a b, Jiang Bo-Nan (姜伯楠)a b, Qian Jun (钱军)a, Wang Yu-Zhu (王育竹)a
a Key Laboratory for Quantum Optics, Center for Cold Atoms, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We investigate the transport dynamics of an interacting binary Bose-Einstein condensate in an incommensurate optical lattice and predict a novel splitting of a matter wavepacket induced by disorder potential and inter–species interaction. The effect of atomic interaction on the dynamics of the mobile and localized atoms are also studied in detail. We also discuss the behavior of the balanced and inbalanced mixtures in the incommensurate optical lattice.
Keywords:  multicomponent Bose–Einstein condensates      Anderson localization      dynamic properties  
Received:  02 April 2013      Revised:  07 May 2013      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104292) and the National Basic Research Program of China (Grant No. 2011CB921504).
Corresponding Authors:  Qian Jun, Wang Yu-Zhu     E-mail:  jqian@siom.ac.cn;yzwang@mail.shcnc.ac.cn

Cite this article: 

Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹) Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice 2013 Chin. Phys. B 22 100501

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Mott N F and Twose W D 1961 Adv. Phys. 10 107
[3] Borland R E 1963 Proc. R. Soc. A 274 529
[4] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[5] Ioffe A F and Regel A R 1960 Prog. Semicond. 4 237
[6] Mott N F 1967 Adv. Phys. 16 49
[7] Harper P G 1955 Proc. Phys. Soc. A 68 874
[8] Aubry S and André 1980 Ann. Israel Phys. Soc. 3 133
[9] Wiersma D S, Bartolini P, Lagendijk A and Righini R 1997 Nature 390 671
[10] Störzer M, Gross P, Aegerter C M and Maret G 2006 Phys. Rev. Lett. 96 063904
[11] Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52
[12] Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y 2008 Phys. Rev. Lett. 100 013906
[13] Chabanov A A, Stoytchev M and Genack A Z 2000 Nature 404 850
[14] Hu H, Strybulevych A, Page J H, Skipetrov S E and van Tiggelen B A 2008 Nat. Phys. 4 945
[15] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
[16] Lye J E, Fallani L, Modugno M, Wiersma D S, Fort C and Inguscio M 2005 Phys. Rev. Lett. 95 070401
[17] Sanchez-Palencia L and Lewenstein M 2010 Nat. Phys. 6 87
[18] Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[19] Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891
[20] Kondov S S, McGehee W R, Zirbel J J and DeMarco B 2011 Science 334 66
[21] Jendrzejewski F, Bernard A, Müller K, Cheinet P, Josse V, Piraud M, Pezze L, Sanchez-Palencia L, Aspect A and Bouyer P 2012 Nat. Phys. 8 398
[22] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
[23] Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
[24] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[25] Zhou Y, Huang G X, Ma X D and Ma Y L 2006 Chin. Phys. 15 1871
[26] Hao Y J and Liang J Q 2006 Chin. Phys. 15 1161
[27] Ao S M and Yan J R 2006 Chin. Phys. 15 296
[28] Zhan M S, Wen L H, Liu M, Kong L B and Chen A X 2005 Chin. Phys. 14 690
[29] Wang D L, Tang Y and Yan X H 2004 Chin. Phys. 12 203
[30] Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
[31] Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1134
[32] Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
[33] Zhou X J, Li W D, Chen X Z and Wang Y Q 2002 Chin. Phys. Lett. 19 1581
[34] Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
[35] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge: Cambridge University Press)
[36] Modugno G 2010 Rep. Prog. Phys. 73 102401
[37] Xu Z, Duan Y F, Zhou S Y, Hong T and Wang Y Z 2009 Chin. Phys. Lett. 26 090303
[38] De Nicola S, Malomed B A and Fedele R 2006 Phys. Lett. A 360 164
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[3] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[4] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[5] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[6] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[7] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[8] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[9] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
[10] First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds
Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟). Chin. Phys. B, 2018, 27(12): 126201.
[11] Elastic, vibrational, and thermodynamic properties of Sr10(PO4)6F2 and Ca10(PO4)6F2 from first principles
Xianggang Kong(孔祥刚), Zhihong Yuan(袁志红), You Yu(虞游), Tao Gao(高涛), Shenggui Ma(马生贵). Chin. Phys. B, 2017, 26(8): 086301.
[12] Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge
Long-Yan Gong(巩龙延), Xiao-Xin Zhao(赵小新). Chin. Phys. B, 2017, 26(7): 077202.
[13] High-pressure dynamic, thermodynamic properties, and hardness of CdP2
Shi-Quan Feng(冯世全), Ling-Li Wang(王伶俐), Xiao-Xu Jiang(姜晓旭), Hai-Nin Li(李海宁), Xin-Lu Cheng(程新路), Lei Su(苏磊). Chin. Phys. B, 2017, 26(4): 046301.
[14] Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations
M A Ali, M R Khatun, N Jahan, M M Hossain. Chin. Phys. B, 2017, 26(3): 033102.
[15] First-principles calculations of structural and thermodynamic properties of β-PbO
Vahedeh Razzazi, Sholeh Alaei. Chin. Phys. B, 2017, 26(11): 116501.
No Suggested Reading articles found!