Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 073701    DOI: 10.1088/1674-1056/22/7/073701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Nanoscale guiding for cold atoms based on surface plasmons alongtips of metallic wedges

Wang Zheng-Ling (王正岭)a, Tang Wei-Min (唐伟民)a, Zhou Ming (周明)b c, Gao Chuan-Yu (高传玉)b
a Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013, China;
b Center for Photon Manufacturing Science and Technology, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
c State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract  We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution. We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method, and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87Rb atoms in the light field of one pair and two pairs of tips of metallic wedges. It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms. Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field. This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.
Keywords:  nanoscale guiding      cold atoms      surface plasmons      metallic wedges  
Received:  17 October 2012      Revised:  04 February 2013      Accepted manuscript online: 
PACS:  37.10.Gh (Atom traps and guides)  
  42.50.-p (Quantum optics)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB013004), the National Natural Science Foundation of China (Grant No. 50975128), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011462), and the Postdoctoral Science Foundation of China (Grant No. 20100481093).
Corresponding Authors:  Wang Zheng-Ling     E-mail:  zlwang@ujs.edu.cn

Cite this article: 

Wang Zheng-Ling (王正岭), Tang Wei-Min (唐伟民), Zhou Ming (周明), Gao Chuan-Yu (高传玉) Nanoscale guiding for cold atoms based on surface plasmons alongtips of metallic wedges 2013 Chin. Phys. B 22 073701

[1] Yin J, Gao W and Zhu Y 2003 Prog. Opt. 45 119
[2] Xu X, Kim K, Jhe W and Kwon N 2001 Phys. Rev. A 63 063401
[3] Pruvost L, Marescaux D, Houde O and Duong H T 1999 Opt. Commun. 166 199
[4] Wolschrijn B T, Cornelussen R A, Spreeuw R J C and van den Heuvell H B 2002 New J. Phys. 4 69
[5] Ol'Shanii M A, Ovchinnikov Yu B and Letkhov V S 1993 Opt. Commun. 98 77
[6] Renn M J, Montgomery D, Vdovin O, Anderson D Z, Wieman C E and Cornell E A 1995 Phys. Rev. Lett. 75 3253
[7] Renn M J, Zozulya A A, Donley E A, Cornell E A and Anderson D Z 1997 Phys. Rev. A 55 3684
[8] Ito H, Nakata T, Sakaki K, Ohtsu M, Lee K I and Jhe W 1996 Phys. Rev. Lett. 76 4500
[9] Wang Z, Dai M and Yin J 2005 Opt. Express 13 8406
[10] Wang Z and Yin J 2006 Opt. Express 14 9551
[11] Monroe C and Lukin M D 2008 Phys. World 21 32
[12] Treutlein P, Steinmetz T, Colombe Y, Lev B, Hommelhoff P, Reichel J, Greiner M, Mandel O, Widera A, Rom T, Bloch I and Hansch T W 2006 Fortschr. Phys. 54 702
[13] Andre A, Demille D, Doyle J M, Lukin M D, Maxwell S E, Rable P, Schoelkopf R J and Zoller P 2006 Nature Phys. 2 636
[14] Folman R, Kruger P, Schmiedmayer, Denschlag J and Henkel C 2002 Adv. At. Mol. Opt. Phys. 48 263
[15] Chang D E, Thompson J D, Park H, Vuletic V, Zibrov A S, Zoller P and Lukin M D 2009 Phys. Rev. Lett. 103 123004
[16] Balykin V I, Klimov V V and Letokhov V S 2003 JETP Lett. 78 8
[17] Klimov V V, Sekatskii S K and Dietler G 2006 Opt. Commun. 259 883
[18] Chang D E, S?rensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[19] Murphy B and Hau L V 2009 Phys. Rev. Lett. 102 033003
[20] Stehle C, Bender H, Zimmermann C, Kern D, Fleischer M and Slama S 2011 Nature Photon. 5 494
[21] Juan M L, Righini M and Quidant R 2011 Nature Photon. 5 349
[22] Shaffer J P 2011 Nature Photon. 5 451
[23] Yin J 2006 Phys. Rep. 430 1
[24] Takekoshi T and Knize R J 1996 Opt. Lett. 21 77
[25] Ovchinnikov Yu B, Manek L and Grimm R 1997 Phys. Rev. Lett. 79 2225
[26] Wang Z, Cao G and Yin J 2008 Opt. Commun. 281 4348
[27] Yin J and Gao W 2004 Acta Phys. Sin. 53 4157 (in Chinese)
[1] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[4] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[5] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[6] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[7] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[8] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[9] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[10] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[11] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[12] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[13] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[14] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[15] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
No Suggested Reading articles found!