Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050401    DOI: 10.1088/1674-1056/22/5/050401
GENERAL Prev   Next  

The stability of a shearing viscous star with an electromagnetic field

M. Sharifa, M. Azamaa b
a Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan;
b Division of Science and Technology, University of Education, Township Campus, Lahore-54590, Pakistan
Abstract  We analyze the role of the electromagnetic field for the stability of a shearing viscous star with spherical symmetry. Matching conditions are given for the interior and the exterior metrics. We use a perturbation scheme to construct the collapse equation. The range of instability is explored in Newtonian and post Newtonian (pN) limits. We conclude that the electromagnetic field diminishes the effects of the shearing viscosity in the instability range and makes the system more unstable in both Newtonian and post Newtonian approximations.
Keywords:  gravitational collapse      electromagnetic field      instability  
Received:  24 September 2012      Revised:  06 November 2012      Accepted manuscript online: 
PACS:  04.20.-q (Classical general relativity)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  
Corresponding Authors:  M. Sharif, M. Azama     E-mail:  msharif.math@pu.edu.pk; azammath@gmail.com

Cite this article: 

M. Sharif, M. Azama The stability of a shearing viscous star with an electromagnetic field 2013 Chin. Phys. B 22 050401

[1] Sharif M and Abbas G 2010 Astrophys. Space Sci. 327 285
[2] Sharif M and Abbas G 2011 J. Phys. Soc. Jpn. 80 104002
[3] Sharif M and Abbas G 2013 Chin. Phys. B 22 030401
[4] Eddington A S 1926 Internal Constitution of the Stars (Cambrigde: Cambrigde University Press)
[5] Glendenning N 2000 Compact Stars (Berlin: Springer)
[6] Rosseland S 1924 Mon. Not. R. Astron. Soc. 84 720
[7] de la Cruz V and Israel W 1967 Nuovo Cimento A 51 744
[8] Bekenstein J 1970 Phys. Rev. D 4 2185
[9] Olson E and Bailyn M 1976 Phys. Rev. D 13 2204
[10] Mashhoon B and Partovi M 1979 Phys. Rev. D 20 2455
[11] Zhang J L, Chau W Y and Deng T Y 1982 Astrophys. Space Sci. 88 81
[12] Ghezzi C 2005 Phys. Rev. D 72 104017
[13] Barreto W, Rodrguez B, Rosales L and Serrano O 2007 Gen. Relativ. Gravit. 39 537
[14] Chandrasekhar S 1964 Astrophys. J. 140 417
[15] Herrera L, Santos N O and Le Denmat G 1989 Mon. Not. R. Astron. Soc. 237 257
[16] Chan R, Kichenassamy S, Le Denmat G and Santos N O 1989 Mon. Not. R. Astron. Soc. 239 91
[17] Chan R, Herrera L and Santos N O 1993 Mon. Not. R. Astron. Soc. 265 533
[18] Chan R, Herrera L and Santos N O 1994 Mon. Not. R. Astron. Soc. 267 637
[19] Herrera L, Santos N O and Le Denmat G 2012 Gen. Relativ. Gravit. 44 1143
[20] Chan R 2000 Mon. Not. R. Astron. Soc. 316 588
[21] Horvat D, Ilijic S and Marunovic A 2011 Class. Quantum Grav. 28 25009
[22] Hernandez H, Nunez L A and Percoco U 1999 Class. Quantum Grav. 16 871
[23] Hernandez H and Nunez L A 2004 Can. J. Phys. 82 29
[24] Sharif M and Kausar H R 2012 Astrophys. Space Sci. 337 805
[25] De Felice F, Yu Y and Fang Z 1995 Mon. Not. R. Astron. Soc. 277 L17
[26] De Felice F, Siming L and Yunqiang Y 1999 Class. Quantum Grav. 16 2669
[27] De Felice F, Siming L and Yunqiang Y 2003 Phys. Rev. D 68 084004
[28] Stettner R 1973 Ann. Phys. 80 212
[29] Glazer I 1976 Ann. Phys. 101 594
[30] Mak M, Dobson P and Harko T 2001 Europhys. Lett. 55 310
[31] Misner C W and Sharp D 1964 Phys. Rev. 136 B571
[32] Giuliani A and Rothman T 2008 Gen. Relativ. Gravit. 40 1427
[33] Andreasson H 2009 Commun. Math. Phys. 288 715
[34] Bohmer C and Harko T 2007 Gen. Relativ. Gravit. 39 757
[35] Buchdahl H 1959 Phys. Rev. 116 1027
[36] Sharif M and Azam M 2012 JCAP 02 043
[37] Darmois G 1927 Memorial des Sciences Mathematiques (Gautheir-Villars)
[38] Harrison B K, Thorne K S, Wakano M and Wheeler J A 1965 Gravitation Theory and Garvitational Collapse (Chicago: University of Chicago Press)
[39] Pinheiro G and Chan R 2012 Gen. Relativ. Gravit. 45 213
[40] Ernesto F E and Simeone C 2011 Phys. Rev. D 83 104009
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[4] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[5] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[6] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[7] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[8] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[9] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[10] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[11] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[12] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[13] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[14] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[15] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
No Suggested Reading articles found!