Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 050307    DOI: 10.1088/1674-1056/20/5/050307
GENERAL Prev   Next  

A new synchronization scheme based on time division multiplexing and wavelength division multiplexing technology for practical quantum key distribution system

Zhong Ping-Ping(钟平平)a), Zhang Hua-Ni(张华妮) a), Wang Jin-Dong(王金东)a)†, Qin Xiao-Juan(秦晓娟)b), Wei Zheng-Jun(魏正军) a), Chen Shuai(陈帅)a), and Liu Song-Hao(刘颂豪)a)
a Key Laboratory of Photonic Information Technology of Guangdong Higher Education Institutes SIPSE & LQIT, South China Normal University, Guangzhou 510006, China; b Guangdong Radio & TV University, Guangzhou 510091, China
Abstract  Three clock synchronization schemes for a quantum key distribution system are compared experimentally through the outdoor fibre and the interaction physical model of the the clock signal and the the quantum signal in the quantum key distribution system is analysed to propose a new synchronization scheme based on time division multiplexing and wavelength division multiplexing technology to reduce quantum bits error rates under some transmission rate conditions. The proposed synchronization scheme can not only completely eliminate noise photons from the bright background light of the the clock signal, but also suppress the fibre nonlinear crosstalk.
Keywords:  quantum key distribution      clock synchronization      wavelength division multiplexing      time division multiplexing  
Received:  11 July 2010      Revised:  22 November 2010      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the Key Projects in the Guangzhou Science & Technology Pillar Program of China (Grant No. 2008Z1-D501), the Guangdong Key Technologies Research & Development Program of China (Grant No. 2007B010400009), the Guangdong Polytechnic Institute Scientific Research Fund, China (Grant No. 0901), and the Key Laboratory Program of Quantum Information of Chinese Academy of Sciences.

Cite this article: 

Zhong Ping-Ping(钟平平), Zhang Hua-Ni(张华妮), Wang Jin-Dong(王金东), Qin Xiao-Juan(秦晓娟), Wei Zheng-Jun(魏正军), Chen Shuai(陈帅), and Liu Song-Hao(刘颂豪) A new synchronization scheme based on time division multiplexing and wavelength division multiplexing technology for practical quantum key distribution system 2011 Chin. Phys. B 20 050307

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore India, December 1984, pp. 175--179
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[5] Koashi M and Imoto N 1997 Phys. Rev. Lett. 79 2383
[6] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[7] Zhang H N, Wang J D, Liu X B, Wei Z J and Liu S H 2009 Opt. Commun. 282 3037
[8] Wang J D, Qin X J, Zhang H N, Wei Z J, Liao C J and Liu S H 2009 Opt. Commun. 282 3379
[9] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[10] Inamori H, Lütkenhaus N and Mayers D 2007 Eur. Phys. J. D 41 599
[11] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quant. Inf. Comput. 4 325
[12] Won-Young H 2003 Phys. Rev. Lett. 91 057901
[13] Wang X B 2005 Phys. Rev. Lett. 94 230503
[14] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[15] Zhao Y, Qi B, Ma X F, Lo H K and Li Q 2006 Phys. Rev. Lett. 96 070502
[16] Zhao Y, Adve R and Lim T J 2006 Proceedings of IEEE International Symposium on Information Theory Seattle, July 9--14, 2006, pp. 2094--2098
[17] Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J, Lita A E, Nam S W and Nordholt J E 2007 Phys. Rev. Lett. 98 010503
[18] Zhang X Z, Gong W G, Tan Y G, Ren Z Z and Guo X T 2009 Chin. Phys. B 18 2143
[19] Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F and Guo G C 2009 Chin. Sci. Bull. 54 2991
[20] Buller G S, Collins R J, Clarke P J, Fernandez V, Gordon K J, Hiskett P A and Townsend P D 2009 Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics Shanghai, August 30--September 3, 2009, pp. 1, 2
[21] Wen H, Han Z F, Guo G C and Hong P L 2009 Chin Phys. B 18 46
[22] Migdall A L, Branning D and Castelletto S 2002 Phys. Rev. A 66 053805
[23] Fasel S, Alibart O, Tanzilli S, Baldi P, Beveratos A, Gisin N and Zavatta A 2004 N. J. Phys. 6 163
[24] Goldschmidt E A, Eisaman M D, Fan J, Polyakov S and Migdall A 2008 Phys. Rev. A 78 013844
[25] McMillan A R, Fulconis J, Halder M, Xiong C, Rarity J G and Wadsworth W J 2009 Opt. Express 17 6156
[26] Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y 2007 Nature Photonics 6 343
[27] Hiroki T, Toshimori H, Kiyoshi T and Yasuhiro T 2009 IEEE Communications Magazine 09 0163
[28] Akihiro T, Mikio F, Sae Woo N, Yoshihiro N, Seigo T, Wakako M, Ken-ichiro Y, Shigehito M, Burm B, Wang Z, Akio T, Masahide S and Akihisa T 2008 Opt. Express 16 11354
[29] Alexios B, Rosa B, Thierry G andré V, Jean-Philippe P and Philippe G 2002 Phys. Rev. Lett. 89 187901
[30] Mo X F, Zhu B Han Z F, Gui Y Z and Guo G C 2005 Opt. Lett. 30 2632
[31] Gordon K J, Fernandez V, Townsend P D and Buller G S 2004 IEEE J. Quant. Electro. 40 900
[32] Da Silva T F and von der Weid J P 2009 Journal of Microwaves Optoelectronics and Electromagnetic Applications 8 163S
[33] Akihisa T, Ken-ichiro Y, Yoshihiro N, Akio T, Akihiro T Seigo T, Wakako M, Shigehito M, Wang Z, Mikio F and Masahi S 2010 Opt. Fiber Technol. 16 55
[34] Maeda M W, Sessa W B, Way W I, Yi-Yan A, Curtis L, Spicer R and Laming R I 1990 J. Lightwave Technol. 8 1402
[35] Christodoulides D N and Joseph R I 1989 J. Quant. Electro. 25 273
[36] Stolen R H and Johnson A M 1986 J. Quant. Electro. 22 2154
[37] Poppe A, Huebel H, Karinou F, Blauensteiner B, Schrenk B, Lorünser T, Mayenburg M, Querasser E and Zeilinger A 2007 Proc. 33rd European Conference on Optical Communication Berlin, September 16--20, 2007, p. 9.4.7
[38] Chapuran T E, Toliver P, Peters N A, Jacke J, Goodman M S, Runser R J, McNown S R, Dallmann N, Hughes R J, McCabe K P, Nordholt J E, Peterson C G, Tyagi K T, Mercer L and Dardy H 2009 New J. Phys. 11 105001
[39] Agrawall G P 2004 Fiber-optic Communication Systems (3rd ed.) (Beijing: Tsinghua University Press) pp. 38, 39 endfootnotesize
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
No Suggested Reading articles found!