Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120508    DOI: 10.1088/1674-1056/20/12/120508
GENERAL Prev   Next  

Modified impulsive synchronization of fractional order hyperchaotic systems

Fu Jie(浮洁)a)†, Yu Miao(余淼) a), and Ma Tie-Dong(马铁东)b)
a Key Laboratory of Optoelectronic Technology and System, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; b College of Automation, Chongqing University, Chongqing 400044, China
Abstract  In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.
Keywords:  hyperchaotic systems      fractional order chaotic systems      synchronization      impulsive control  
Received:  03 July 2011      Revised:  27 July 2011      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 51073179), the Natural Science Foundation of Chongqing, China (Grant No. CSTC 2010BB2238), the Doctoral Program of Higher Education Foundation of Institutions of China (Grant Nos. 20090191110011 and 20100191120025), the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20100470813 and 20100480043), and the Fundamental Research Funds for the Central Universities (Grant Nos. CDJZR11 12 00 03 and CDJZR11 12 88 01).

Cite this article: 

Fu Jie(浮洁), Yu Miao(余淼), and Ma Tie-Dong(马铁东) Modified impulsive synchronization of fractional order hyperchaotic systems 2011 Chin. Phys. B 20 120508

[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic)
[2] Hilfer R 2001 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
[3] Hartley T T, Lorenzo C F and Qammer H K 1995 emph IEEE Transactions CAS-I 42 485
[4] Ahmad W M and Sprott J C 2003 emph Chaos, Solitons and Fractals 16 339
[5] Zhang R X and Yang S P 2009 emph Chin. Phys. B 18 3295
[6] Lu J G and Chen G R 2006 emph Chaos, Solitons and Fractals 27 685
[7] Lu J G 2006 emph Phys. Lett. A 354 305
[8] Li C G and Chen G R 2004 emph Physica A 341 55
[9] Wu Z M and Xie J Y 2007 emph Chin. Phys. 16 1901
[10] Pecora L M and Carroll T L 1990 emphPhys. Rev. Lett. 64 821
[11] Bhalekar S and Daftardar-Gejji V 2010 emph Commun. Nonlinear Sci. Numer. Simul. 15 3536
[12] Taghvafard H and Erjaee G H 2011 emph Commun. Nonlinear Sci. Numer. Simul. 16 4079
[13] Hosseinnia S H, Ghaderi R, Ranjbar N A, Mahmoudiana M and Momani S 2010 emph Comput. Math. Appl. 59 1637
[14] Tavazoei M S and Haeri M 2008 emph Physica A 387 57
[15] Sun N, Zhang H G and Wang Z L 2011 emph Acta Phys. Sin. 60 050511 (in Chinese)
[16] Zhao L D, Hu J B and Liu X H 2010 emphActa Phys. Sin. 59 2305 (in Chinese)
[17] Odibat Z M 2010 emph Nonlinear Dyn. 60 479
[18] Zhang R X and Yang S P 2010 emph Chin. Phys. B 19 020510
[19] Wu C J, Zhang Y B and Yang N N 2011 emph Chin. Phys. B 20 060505
[20] Wang X Y, Zhang Y L, Li D and Zhang N 2011 emph Chin. Phys. B 20 030506
[21] Sheu L J, Tam L M, Lao S K, Kang Y, Lin K T, Chen J H and Chen H K 2009 emph Int. J. Nonlinear Sci. Numer. Simul. 10 33
[22] Zhang H G, Ma T D, Huang G B and Wang Z L 2010 emphIEEE Trans. Syst. Man Cybern. B 40 831
[23] Ma T D, Fu J and Sun Y 2010 emph Chin. Phys. B 19 090502
[24] Ma T D, Zhang H G and Wang Z L 2007 emphActa Phys. Sin. 56 3796 (in Chinese)
[25] Zhang H G, Ma T D, Yu W and Fu J 2008 emphChin. Phys. B 17 3616
[26] Zhang H G, Ma T D, Fu J and Tong S C 2009 emphChin. Phys. B 18 3742
[27] Zhang H G, Ma T D, Fu J and Tong S C 2009 emphChin. Phys. B 18 3751
[28] Wang X Y and Song J M 2009 emph Commun. Nonlinear Sci. Numer. Simul. 14 3351
[29] Gao T G, Chen Z Q, Yuan Z Z and Yu D C 2007 emphChaos, Solitons and Fractals 33 922
[30] Cafagna D and Grassi G 2010 emphInt. J. Bifur. Chaos 20 3209
[31] Min F H, Yu Y and Ge C J 2009 emphActa Phys. Sin. 58 1456 (in Chinese)
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!