Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110204    DOI: 10.1088/1674-1056/20/11/110204
GENERAL Prev   Next  

Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients

Zhang Yi(张翼), Wei Wei-Wei(魏薇薇), Cheng Teng-Fei(程腾飞), and Song Yang(宋洋)
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
Abstract  In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Bäcklund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived.
Keywords:  binary Bell polynomial      bilinear B?cklund transformation      Lax pair      conservation law  
Received:  13 April 2011      Revised:  17 May 2011      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10831003) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100791 and R6090109).

Cite this article: 

Zhang Yi(张翼), Wei Wei-Wei(魏薇薇), Cheng Teng-Fei(程腾飞), and Song Yang(宋洋) Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients 2011 Chin. Phys. B 20 110204

[1] Yan Z Y and Zhang H Q 2001 J. Phys. A bf34 1785
[2] Tian B and Gao Y T 2005 Phys. Lett. A bf340 243
[3] Gao Y T and Tian B 2006 Phys. Lett. A bf349 314
[4] Ye L Y, Lv Y N, Zhang Y and Jin H P 2008 Chin. Phys. Lett. 25 357
[5] Wang H and Li B 2011 Chin. Phys. B 20 040203
[6] Serkin V N and Hasegawa A 2000 Phys. Rev. Lett. 85 4502
[7] Kruglov V I, Peacock A C and Harvey J D 2005 Phys. Rev. E 71 056619
[8] Serkin V, Matsumoto M and Belyaeva T 2001 Opt. Comm. bf196 159
[9] Biswas A 2003 J. Nonl. Opt. Phys. Mat. 12 17
[10] Zamir M 2000 The Physics of Pulsatile Flow (New York: Springer-Verlag)
[11] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. bf71 463 bibiteml2 Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
[13] Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev. A 65 053605
[14] Dai H H and Huo Y 2002 Wave Motion 35 55
[15] Chan W L and Li K S 1989 J. Math. Phys. 30 1614
[16] Hirota R 1979 J. Phys. Soc. Jpn. 46 1681
[17] Chan W L, Li K S and Li Y S 1992 J. Math. Phys. 33 3759
[18] Lou S Y and Ruan H Y 1992 Acta Phys. Sin. 41 182 (in Chinese)
[19] Tian B, San W R, Zhang C Y, Wei G M and Gao Y T 2005 Eur. Phys. J. B 47 329
[20] Wei G M, Gao Y T, Hu W and Zhang C Y 2006 Eur. Phys. J. B 53 343
[21] Zhang C Y, Gao Y T, Meng X H, Li J, Xu T, Wei G M and Zhu H W 2006 J. Phys. A 39 1453
[22] Gao Y T and Tian B 2003 Phys. Plasmas 10 4306
[23] Hirota R and Satsuma J 1977 Prog. Theor. Phys. 57 797
[24] Hirota R 2004 Direct Methods in Soliton Theory (Berlin: Springer-Verlag)
[25] Gilson C, Lambert F, Nimmo J and Willox R 1996 Proc. R. Soc. Lond. A 452 223
[26] Lambert F, Loris I and Springael J 2001 Inverse Probl. 17 1067
[27] Lambert F and Springael J 2008 Acta Appl. Math. 102 147
[28] Fan E G 2011 Phys. Lett. A 375 493
[29] Bell E T 1934 Ann. Math. 35 258
[30] Steeb W H and Euler N 1988 Int. J. Mod. Phys. A 7 1669
[31] Hereman W and Zhuang W 1995 Acta Appl. Math. 39 361
[32] Elwakil S A, El-labany S K, Zahran M A and Sabry R 2004 Chaos Soliton. Fract. 19 1083
[33] Yomba E 2004 Chaos Soliton. Fract. 21 75
[34] Zhao H and Bai C L 2006 Chaos Soliton. Fract. 30 217
[1] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[2] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[3] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[4] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[5] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[6] A note on “Lattice soliton equation hierarchy and associated properties”
Xi-Xiang Xu(徐西祥), Min Guo(郭敏). Chin. Phys. B, 2019, 28(1): 010202.
[7] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[8] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[9] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[10] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
[11] Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity
Jia-Xiang Cai(蔡加祥), Qi Hong(洪旗), Bin Yang(杨斌). Chin. Phys. B, 2017, 26(10): 100202.
[12] Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu(傅浩), Wei-En Zhou(周炜恩), Xu Qian(钱旭), Song-He Song(宋松和), Li-Ying Zhang(张利英). Chin. Phys. B, 2016, 25(11): 110201.
[13] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[14] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[15] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
No Suggested Reading articles found!