Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1999, Vol. 8(8): 624-628    DOI: 10.1088/1004-423X/8/8/010
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

EFFECT OF DOPANT ON THE UNIFORMITY OF InAs SELF-ORGANIZED QUANTUM DOTS

WANG HAI-LONG (王海龙), ZHU HAI-JUN (朱海军), FENG SONG-LIN (封松林), NING DONG (宁东), WANG HUI (汪辉), WANG XIAO-DONG (王晓东), JIANG DE-SHENG (江德生)
National Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
Abstract  Low-temperature photoluminescence studies have been performed on Si-doped and Bedoped self-organized InAs/GaAs quantum dot(QD) samples to investigate the effect of doping. When Si or Be is doped into the sample,a remarkable decrease in line-width is observed. We relate this phenomenon to a model that takes the Si or Be atoms as the nucleation centers for the formation of QDs. When Si or Be is doped, more smalll uniform quantum dots are formed. The result will be of significance for the application of self-organized InAs quantum dots in semiconductor devices.
Received:  08 April 1999      Accepted manuscript online: 
PACS:  78.67.Hc (Quantum dots)  
  78.55.Cr (III-V semiconductors)  
  61.72.uj (III-V and II-VI semiconductors)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
Fund: Project supported by the National Natural Science Foundation of China(Grant No.69776016 and 19823001) and the State Key Program for Basic Research.

Cite this article: 

WANG HAI-LONG (王海龙), ZHU HAI-JUN (朱海军), FENG SONG-LIN (封松林), NING DONG (宁东), WANG HUI (汪辉), WANG XIAO-DONG (王晓东), JIANG DE-SHENG (江德生) EFFECT OF DOPANT ON THE UNIFORMITY OF InAs SELF-ORGANIZED QUANTUM DOTS 1999 Acta Physica Sinica (Overseas Edition) 8 624

[1] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[2] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
[3] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[4] Linear and nonlinear optical response of g-C3N4-based quantum dots
Jing-Zhi Zhang(张竞之) and Hong Zhang(张红). Chin. Phys. B, 2021, 30(7): 077802.
[5] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[6] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[7] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[8] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[9] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[10] Preparation and photoelectric properties of cadmium sulfide quantum dots
Yue Gu(古月), Libin Tang(唐利斌), Xiaopeng Guo(郭小鹏), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(4): 047803.
[11] SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector
Yao Li(李尧), Libin Tang(唐利斌), Rujie Li(李汝劼), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(3): 037801.
[12] Quantum frequency down-conversion of single photons at 1552 nm from single InAs quantum dot
Ben Ma(马奔), Si-Hang Wei(魏思航), Ze-Sheng Chen(陈泽升), Xiang-Jun Shang(尚向军), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(9): 097802.
[13] Spin manipulation in semiconductor quantum dots qubit
Ke Wang(王柯), Hai-Ou Li(李海欧), Ming Xiao(肖明), Gang Cao(曹刚), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(9): 090308.
[14] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[15] Magneto-optical properties of self-assembled InAs quantum dots for quantum information processing
Jing Tang(唐静), Xiu-Lai Xu(许秀来). Chin. Phys. B, 2018, 27(2): 027804.
No Suggested Reading articles found!