Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017504    DOI: 10.1088/1674-1056/ad053d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers

Huiping Li(李慧平)1,2, Shuaiwei Pan(潘帅唯)2, Zhe Wang(王喆)3, Bin Xiang(向斌)4, and Wenguang Zhu(朱文光)1,2,†
1 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
2 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
4 Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations, we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.
Keywords:  exchange bias      two-dimensional ferromagnetic/antiferromagnetic bilayers      asymmetric magnetic interaction  
Received:  01 September 2023      Revised:  18 October 2023      Accepted manuscript online:  20 October 2023
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.75.-c (Magnetic properties of nanostructures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0210004), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities (Grant No. WK3510000013). Computational support was provided by the National Supercomputing Center in Tianjin.
Corresponding Authors:  Wenguang Zhu     E-mail:  wgzhu@ustc.edu.cn

Cite this article: 

Huiping Li(李慧平), Shuaiwei Pan(潘帅唯), Zhe Wang(王喆), Bin Xiang(向斌), and Wenguang Zhu(朱文光) Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers 2024 Chin. Phys. B 33 017504

[1] Nogués J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
[2] Berkowitz A E and Takano K 1999 J. Magn. Magn. Mater. 200 552
[3] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[4] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
[5] Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S and Baró M D 2005 Phys. Rep. 422 65
[6] Manna P K and Yusuf S M 2014 Phys. Rep. 535 61
[7] Zhang W and Krishnan K M 2016 Mater. Sci. Eng. R Rep. 105 1
[8] Kappenberger P, Martin S, Pellmont Y, Hug H J, Kortright J B, Hellwig O and Fullerton E E 2003 Phys. Rev. Lett. 91 267202
[9] Schuller I K, Morales R, Batlle X, Nowak U and Güntherodt G 2016 J. Magn. Magn. Mater. 416 2
[10] Miltényi P, Gierlings M, Keller J, Beschoten B, Güntherodt G, Nowak U and Usadel K D 2000 Phys. Rev. Lett. 84 4224
[11] Keller J, Miltényi P, Beschoten B, Güntherodt G, Nowak U and Usadel K D 2002 Phys. Rev. B 66 014431
[12] Schulthess T C and Butler W H 1999 J. Appl. Phys. 85 5510
[13] Brück S, Schütz G, Goering E, Ji X and Krishnan K M 2008 Phys. Rev. Lett. 101 126402
[14] Kumar D, Singh S and Gupta A 2016 J. Appl. Phys. 120 085307
[15] Maat S, Takano K, Parkin S S and Fullerton E E 2001 Phys. Rev. Lett. 87 087202
[16] Gruyters M 2005 Phys. Rev. Lett. 95 077204
[17] Ali M, Adie P, Marrows C H, Greig D, Hickey B J and Stamps R L 2007 Nat. Mater. 6 70
[18] Maniv E, Murphy R A, Haley S C, Doyle S, John C, Maniv A, Ramakrishna S K, Tang Y-L, Ercius P, Ramesh R, Reyes A P, Long J R and Analytis J G 2021 Nat. Phys. 17 525
[19] Koon N C 1997 Phys. Rev. Lett. 78 4865
[20] Lederman D, Ramírez R and Kiwi M 2004 Phys. Rev. B 70 184422
[21] Ijiri Y, Schulthess T C, Borchers J A, van der Zaag P J and Erwin R W 2007 Phys. Rev. Lett. 99 147201
[22] Dong S, Yamauchi K, Yunoki S, Yu R, Liang S, Moreo A, Liu J M and Picozzi S and Dagotto E 2009 Phys. Rev. Lett. 103 127201
[23] Yanes R, Jackson J, Udvardi L, Szunyogh L and Nowak U 2013 Phys. Rev. Lett. 111 217202
[24] Phan M H, Kalappattil V, Jimenez V O, Thi Hai Pham Y, Mudiyanselage N W Y A Y, Detellem D, Hung C M, Chanda A and Eggers T 2023 J. Alloys Compd. 937 168375
[25] Gong C and Zhang X 2019 Science 363 eaav4450
[26] Sierra J F, Fabian J, Kawakami R K, Roche S and Valenzuela S O 2021 Nat. Nanotechnol. 16 856
[27] Li Y, Yang B, Xu S, Huang B and Duan W 2022 ACS Appl. Electron. Mater. 4 3278
[28] Choi E M, Sim K I, Burch K S and Lee Y H 2022 Adv. Sci. 9 2200186
[29] Hu G, Zhu Y, Xiang J, Yang T Y, Huang M, Wang Z, Wang Z, Liu P, Zhang Y, Feng C, Hou D, Zhu W, Gu M, Hsu C H, Chuang F C, Lu Y, Xiang B and Chueh Y L 2020 ACS Nano 14 12037
[30] Dai H, Cheng H, Cai M, Hao Q, Xing Y, Chen H, Chen X, Wang X and Han J B 2021 ACS Appl. Mater. Interfaces 13 24314
[31] Huang X, Zhang L, Tong L, Li Z, Peng Z, Lin R, Shi W, Xue K H, Dai H, Cheng H, de Camargo Branco D, Xu J, Han J, Cheng G J, Miao X and Ye L 2023 Nat. Commun. 14 2190
[32] Zheng G, Xie W Q, Albarakati S, Algarni M, Tan C, Wang Y, Peng J, Partridge J, Farrar L, Yi J, Xiong Y, Tian M, Zhao Y J and Wang L 2020 Phys. Rev. Lett. 125 047202
[33] Gweon H K, Lee S Y, Kwon H Y, Jeong J, Chang H J, Kim K W, Qiu Z Q, Ryu H, Jang C and Choi J W 2021 Nano Lett. 21 1672
[34] Ma S, Li G, Li Z, Zhang Y, Lu H, Gao Z, Wu J, Long G and Huang Y 2022 ACS Nano 16 19439
[35] Liu C, Zhang H, Zhang S, Hou D, Liu Y, Wu H, Jiang Z, Wang H, Ma Z, Luo X, Li X, Sun Y, Xu X, Zhang Z and Sheng Z 2023 Adv. Mater. 35 2203411
[36] Ying Z, Chen B, Li C, Wei B, Dai Z, Guo F, Pan D, Zhang H, Wu D, Wang X, Zhang S, Fei F and Song F 2023 Nano Lett. 23 765
[37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[38] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[39] Blöchl P E 1994 Phys. Rev. B 50 17953
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[42] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[43] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[44] Liu X, Pyatakov A P and Ren W 2020 Phys. Rev. Lett. 125 247601
[45] Huang C, Du Y, Wu H, Xiang H, Deng K and Kan E 2018 Phys. Rev. Lett. 120 147601
[46] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738
[47] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[48] He X, Helbig N, Verstraete M J and Bousquet E 2021 Comput. Phys. Commun. 264 107938
[49] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
[50] Xiang H, Lee C, Koo H-J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823
[51] Keffer F and Chow H 1973 Phys. Rev. Lett. 31 1061
[52] Long G, Henck H, Gibertini M, Dumcenco D, Wang Z, Taniguchi T, Watanabe K, Giannini E and Morpurgo A F 2020 Nano Lett. 20 2452
[53] Kim M, Kumaravadivel P, Birkbeck J, Kuang W, Xu S G, Hopkinson D G, Knolle J, McClarty P A, Berdyugin A I, Ben Shalom M, Gorbachev R V, Haigh S J, Liu S, Edgar J H, Novoselov K S, Grigorieva I V and Geim A K 2019 Nat. Electron. 2 457
[54] Wang X, Li D, Li Z, Wu C, Che C M, Chen G and Cui X 2021 ACS Nano 15 16236
[55] Vatansever E, Sarikurt S and Evans R F L 2018 Mater. Res. Express 5 046108
[56] Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 7658
[57] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S and Gao C 2019 Science 366 983
[58] Ni Z, Haglund A V, Wang H, Xu B, Bernhard C, Mandrus D G, Qian X, Mele E J, Kane C L and Wu L 2021 Nat. Nanotechnol. 16 782
[59] Isaacs E B and Marianetti C A 2016 Phys. Rev. B 94 035120
[60] Fuh H R, Chang C R, Wang Y K, Evans R F, Chantrell R W, Jeng H T 2016 Sci. Rep. 6 32625
[61] Kim H H, Yang B, Li S, Jiang S, Jin C, Tao Z, Nichols G, Sfigakis F, Zhong S, Li C, Tian S, Cory D G, Miao G X, Shan J, Mak K F, Lei H, Sun K, Zhao L and Tsen A W 2019 Proc. Natl. Acad. Sci. USA 116 11131
[62] Lv H, Niu Y, Wu X and Yang J 2021 Nano Lett. 21 7050
[63] Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K and Kan E 2018 J. Am. Chem. Soc. 140 11519
[1] Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers
Zongxia Guo(郭宗夏), Gregory Malinowski, Pierre Vallobra, Yi Peng(彭懿), Yong Xu(许涌), Stéphane Mangin, Weisheng Zhao(赵巍胜), Michel Hehn, and Boyu Zhang(张博宇). Chin. Phys. B, 2023, 32(8): 087507.
[2] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[3] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[4] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[5] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[6] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[7] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
[8] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[9] Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon
Qingxue Huang(黄庆学), Fenghua Chen(陈峰华), Mingang Zhang(张敏刚), Xiaohong Xu(许小红). Chin. Phys. B, 2016, 25(5): 057305.
[10] Size-dependent exchange bias in single phase Mn3O4 nanoparticles
Song-Wei Wang(王松伟), Xin Zhang(张鑫), Rong Yao(姚蓉), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2016, 25(11): 117502.
[11] Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers
Zhang Wen (章文), Zhai Ya (翟亚), Lu Mu (鹿牧), You Biao (游彪), Zhai Hong-Ru (翟宏如), Caroline G Morgan. Chin. Phys. B, 2015, 24(4): 047502.
[12] High coercivity in large exchange-bias Co/CoO-MgO nano-granular films
Ge Chuan-Nan (葛传楠), Wan Xian-Gang (万贤纲), Eric Pellegrin, Hu Zhi-Wei (胡志伟), Wen-I Liang, Michael Bruns, Zou Wen-Qin (邹文琴), Du You-Wei (都有为). Chin. Phys. B, 2015, 24(3): 034501.
[13] Multiferroic properties and exchange bias in Bi1-xSrxFeO3 (x=0-0.6) ceramics
Ma Zheng-Zheng (马争争), Li Jian-Qing (李建青), Chen Zi-Peng (陈子鹏), Tian Zhao-Ming (田召明), Hu Xiao-Jun (胡晓军), Huang Hai-Jun (黄海军). Chin. Phys. B, 2014, 23(9): 097505.
[14] Types of the jump phenomenon in the angular dependence of the noncollinear exchange bias
Yang Hong-Ping (杨红萍), Bai Yu-Hao (白宇浩). Chin. Phys. B, 2014, 23(6): 067503.
[15] Exchange bias in ferromagnet/antiferromagnet bilayers
Shi Zhong (时钟), Du Jun (杜军), Zhou Shi-Ming (周仕明). Chin. Phys. B, 2014, 23(2): 027503.
No Suggested Reading articles found!