Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 014211    DOI: 10.1088/1674-1056/acf91c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon

Si-Yu Tu(涂思语)1, De-Feng Liu(刘德峰)2, Jin-Song Liu(刘劲松)1, Zhen-Gang Yang(杨振刚)1, and Ke-Jia Wang(王可嘉)1,†
1 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
2 AVIC Beijing Changcheng Aeronautical Measurement and Control Technology Research Institute, Beijing 101111, China
Abstract  We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.
Keywords:  terahertz      spiral spherical harmonic axicon      quasi-perfect vortex beam      topological charge number  
Received:  01 August 2023      Revised:  31 August 2023      Accepted manuscript online:  13 September 2023
PACS:  42.25.-p (Wave optics)  
  04.30.-w (Gravitational waves)  
  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2017KFYXJJ029).
Corresponding Authors:  Ke-Jia Wang     E-mail:  wkjtode@sina.com

Cite this article: 

Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉) Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon 2024 Chin. Phys. B 33 014211

[1] Allen, Beijersbergen, Spreeuw and Woerdman 1922 Phys. Rev. A 45 8185
[2] Soskin M S, Gorshkov V N, Vasnetsov M V, Malos J T and Heckenberg N R 1997 Phys. Rev. A 56 4064
[3] Wang X W, Nie Z Q, Liang Y, Wang J, Li T and Jia B H 2018 Nanophotonics 7 1533
[4] Xie Z M and Zhang R X Forbes A, Oliveira M and Dennis M R 2021 Nat. Photon. 15 253
[5] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161
[6] Curtis J E and Grier D G 2003 Phys. Rev. Lett. 90 133901
[7] Gahagan K T and Swartzlander G A 1996 Opt. Lett. 21 827
[8] Marzo A, Caleap M and Drinkwater B W 2018 Phys. Rev. Lett. 120 044301
[9] Marzo A, Caleap M and Drinkwater B W Tao S H, Yuan X C and Lin J 2005 Opt. Express 13 7726
[10] Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J and Willner A E 2014 Nat. Commun. 5 4876
[11] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2016 Nat. Commun. 6 488
[12] Wang J 2018 Photon. Res. 4 B14
[13] Zhang X H, Xia T, Cheng S B and Tao S H 2019 Opt. Commun. 431 238
[14] Teja G P, Simon C and Goyal S K 2021 Phys. Rev. A 104 043713
[15] Wallraff A, Lukashenko A, Lisenfeld J, Kemp A, Fistul M V, Koval Y and Ustinov A V 2003 Nature 425 155
[16] Chen R, Agarwal K, Sheppard C J R and Chen X D 2013 Opt. Lett. 38 3111
[17] Ostrovsky A S, Rickenstorff-Parrao C and Arrizon V 2013 Opt. Lett. 38 534
[18] Vaity P and Rusch L 2011 Opt. Lett. 40 597
[19] Kotlyar V V, Kovalev A A and Porfirev A P 2016 J. Opt. Soc. Am. 33 2376
[20] Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J and Kallfass I 2013 Nat. Photon. 7 977
[21] Akyildiz I F, Han C, Hu Z F, Nie S and Jornet J M 2022 IEEE Trans. Commun. 70 4250
[22] Schemmel P, Pisano G and Maffei B 2014 Opt. Express 22 14712
[23] Wei X L, Liu C M, Niu L T, Zhang Z Q, Wang K J, Yang Z G and Liu J S 2015 Appl. Opt. 54 10641
[24] Wang H G, Xu S X, Chen Y Y and Shen B F 2022 New J. Phys. 24 083027
[25] Troha T, Ostatnický T and Kužel P 2021 Opt. Express 29 30461
[26] Sirenko A A, Marsik P, Bernhard C, Stanislavchuk T N, Kiryukhin V and Cheong S W 2019 Phys. Rev. Lett. 122 237402
[27] Yang Y Q, Ye X, Niu L T, Wang K J, Yang Z G and Liu J S 2020 Opt. Express 28 1417
[28] Liu W Y, Yang Q L, Xu Q, Jiang X H, Wu T, Gu J Q, Han J G and Zhang W L 2022 Nanophotonics 11 3631
[29] Huang F, Yang Q L, Xu Q, Jiang X H, Wu T, Gu J Q, Han J G and Zhang W L 2023 Photon. Res. 11 431
[30] Yang Y Q, Xu Q, Liu W Y, Wu T, Gu J Q and Liu J S 2020 Appl. Opt 59 4685
[31] Tu S Y, Peng J Y, Yang Z G, Liu J S and Wang K J 2022 Opt. Express 30 39976
[32] Lv N G 2016 Fourier Optics pp. 120-125
[33] Liu Y, Zhou C X, Guo K L, Wei Z C and Liu H Z 2020 Opt. Express 31 16192
[1] Terahertz toroidal dipole metamaterial sensors for detection of aflatoxin B1
Jianwei Xu(徐建伟), Shoujian Ouyang(欧阳收剑), Shouxin Duan(段守鑫), Liner Zou(邹林儿), Danni Ye(叶丹妮), Sijia Yang(杨思嘉), and Xiaohua Deng(邓晓华). Chin. Phys. B, 2024, 33(3): 038701.
[2] Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
K Gopal, A P Singh, and S Divya. Chin. Phys. B, 2023, 32(6): 065202.
[3] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[4] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[9] Multi-channel terahertz focused beam generator based on shared-aperture metasurface
Jiu-Sheng Li(李九生) and Yi Chen(陈翊). Chin. Phys. B, 2023, 32(12): 124204.
[10] Terahertz shaping technology based on coherent beam combining
Xiao-Ran Zheng(郑晓冉), Dan-Ni Ma(马丹妮), Guang-Tong Jiang(蒋广通), Cun-Lin Zhang(张存林), and Liang-Liang Zhang(张亮亮). Chin. Phys. B, 2023, 32(11): 114210.
[11] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[12] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[15] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
No Suggested Reading articles found!