Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126801    DOI: 10.1088/1674-1056/ac0816
RAPID COMMUNICATION Prev   Next  

Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals

Han-Bin Deng(邓翰宾)1,2,†, Yuan Li(李渊)1,2,†, Zili Feng(冯子力)1,2, Jian-Yu Guan(关剑宇)1,2, Xin Yu(于鑫)1, Xiong Huang(黄雄)1,2, Rui-Zhe Liu(刘睿哲)1,2, Chang-Jiang Zhu(朱长江)1,2, Limin Liu(刘立民)1,2, Ying-Kai Sun(孙英开)1,2, Xi-Liang Peng(彭锡亮)1,2, Shuai-Shuai Li(李帅帅)1,2, Xin Du(杜鑫)1,2, Zheng Wang(王铮)1,2, Rui Wu(武睿)1,3, Jia-Xin Yin(殷嘉鑫)4, You-Guo Shi(石友国)1,3,5, and Han-Qing Mao(毛寒青)1,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Laboratory for Topological Quantum Matter and Spectroscopy(B7), Department of Physics, Princeton University, Princeton, NJ 08544, USA;
5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Interface can be a fertile ground for exotic quantum states, including topological superconductivity, Majorana mode, fractal quantum Hall effect, unconventional superconductivity, Mott insulator, etc. Here we grow single-unit-cell (1UC) FeTe film on NbSe2 single crystal by molecular beam epitaxy (MBE) and investigate the film in-situ with a home-made cryogenic scanning tunneling microscopy (STM) and non-contact atomic force microscopy (AFM) combined system. We find different stripe-like superlattice modulations on grown FeTe film with different misorientation angles with respect to NbSe2 substrate. We show that these stripe-like superlattice modulations can be understood as moiré pattern forming between FeTe film and NbSe2 substrate. Our results indicate that the interface between FeTe and NbSe2 is atomically sharp. By STM-AFM combined measurement, we suggest that the moiré superlattice modulations have an electronic origin when the misorientation angle is relatively small (≤ 3°) and have structural relaxation when the misorientation angle is relatively large (≥ 10°).
Keywords:  scanning tunneling microscopy (STM)      atomic force microscopy (AFM)      FeTe film      moiré superlattice      misorientation  
Received:  23 March 2021      Revised:  02 June 2021      Accepted manuscript online:  04 June 2021
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  61.46.-w (Structure of nanoscale materials)  
  07.79.Cz (Scanning tunneling microscopes)  
  07.79.Lh (Atomic force microscopes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302400, 2016YFA0300602, and 2017YFA0302903), the National Natural Science Foundation of China (Grant No. 11227903), the Beijing Municipal Science and Technology Commission, China (Grant Nos. Z181100004218007 and Z191100007219011), the National Basic Research Program of China (Grant No. 2015CB921304), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB07000000, XDB28000000, and XDB33000000).
Corresponding Authors:  Han-Qing Mao     E-mail:  mhq@iphy.ac.cn

Cite this article: 

Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青) Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals 2021 Chin. Phys. B 30 126801

[1] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[2] Linder J, Tanaka Y, Yokoyama T, Sudbo A and Nagaosa N 2010 Phys. Rev. Lett. 104 067001
[3] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[4] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F and Xue Q K 2012 Science 336 52
[5] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C and Jia J F 2014 Phys. Rev. Lett. 112 217001
[6] Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W, Li Q, Gilbert M J, Chou F, Samarth N and Hasan M Z 2014 Nat. Phys. 10 943
[7] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
[8] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
[9] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
[10] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[11] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F 2019 Nature 572 215
[12] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653
[13] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[14] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F 2019 Nat. Phys. 15 237
[15] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543
[16] Peng X L, Li Y, Wu X X, Deng H B, Shi X, Fan W H, Li M, Huang Y B, Qian T, Richard P, Hu J P, Pan S H, Mao H Q, Sun Y J and Ding H 2019 Phys. Rev. B 100 155134
[17] Wu X, Qin S, Liang Y, Fan H and Hu J 2016 Phys. Rev. B 93 115129
[18] Shi X, Han Z Q, Richard P, Wu X X, Peng X L, Qian T, Wang S C, Hu J P, Sun Y J and Ding H 2017 Sci. Bull. 62 503
[19] Mao H Q unpublished
[20] Wang Y, Jiang Y, Chen M, Li Z, Song C, Wang L, He K, Chen X, Ma X and Xue Q K 2012 J. Phys. Condens. Matter. 24 475604
[21] Eich A, Rollfing N, Arnold F, Sanders C, Ewen P R, Bianchi M, Dendzik M, Michiardi M, Mi J L, Bremholm M, Wegner D, Hofmann P and Khajetoorians A A 2016 Phys. Rev. B 94 125437
[22] Singh U R, Warmuth J, Markmann V, Wiebe J and Wiesendanger R 2016 J. Phys. Condens. Matter. 29 025004
[23] Cavallin A, Sevriuk V, Fischer K N, Manna S, Ouazi S, Ellguth M, Tusche C, Meyerheim H L, Sander D and Kirschner J 2016 Surf. Sci. 646 72
[24] Song S Y, Martiny J H J, Kreisel A, Andersen B M and Seo J 2020 Phys. Rev. Lett. 124 117001
[25] Qin H, Chen X, Guo B, Pan T, Zhang M, Xu B, Chen J, He H, Mei J, Chen W, Ye F and Wang G 2021 Nano Lett. 21 1327
[26] Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W and Loh K P 2017 J. Am. Chem. Soc. 139 9392
[27] Hembacher S, Giessibl F J, Mannhart J and Quate C F 2003 Proc. Natl. Acad. Sci. USA 100 12539
[28] Mao H Q, Li N, Chen X and Xue Q K 2012 Chin. Phys. Lett. 29 066802
[29] Sun Z, Hämäläinen S K, Sainio J, Lahtinen J, Vanmaekelbergh D and Liljeroth P 2011 Phys. Rev. B 83 081415
[30] Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F and Li X 2021 Nat. Mater. 20 1100
[1] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[2] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[3] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[4] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[5] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[6] Control of symmetric properties of metamorphic In0.27Ga0.73As layers by substrate misorientation
Shu-Zhen Yu(于淑珍), Jian-Rong Dong(董建荣), Yu-Run Sun(孙玉润), Kui-Long Li(李奎龙),Xu-Lu Zeng(曾徐路), Yong-Ming Zhao(赵勇明), Hui Yang(杨辉). Chin. Phys. B, 2016, 25(3): 038101.
[7] Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition
Liu Bo (刘波), Zhang Sen (张森), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Dun Shao-Bo (敦少博), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2013, 22(5): 057105.
[8] Stabilization variation of organic conductor surfaces induced by $\pi$-$\pi$ stacking interactions
Dou Rui-Fen(窦瑞芬), Lin Feng(林峰), Liu Fu-Wei(刘富伟), Sun Yi(孙祎), Yang Ji-Yong(杨继勇), Lin Bing-Fa(林炳发), He Lin(何林), Xiong Chang-Min(熊昌民), and Nie Jia-Cai(聂家财) . Chin. Phys. B, 2012, 21(5): 056801.
No Suggested Reading articles found!