Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020701    DOI: 10.1088/1674-1056/abcf46
GENERAL Prev   Next  

In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature

Jing-Yue Xuan(宣景悦)1,†, Guo-Dong Zhao(赵国栋)1,†, Xiao-Bo Shi(史小波)2, Wei Geng(耿伟)1, Heng-Zheng Li(李恒征)1, Mei-Ling Sun(孙美玲)1, Fu-Chao Jia(贾福超)1, Shu-Gang Tan(谭树刚)1, Guang-Chao Yin(尹广超)1,‡, and Bo Liu(刘波)1,§
1 Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China; 2 Institute of Artificial Intelligence, Henan Finance University, Zhengzhou 450046, China
Abstract  The zinc oxide (ZnO) nanoparticles (NPs) sensors were prepared in-situ on the gas-sensing electrodes by a one-step simple sol-gel method for the detection of hydrogen sulfide (H2S) gas. The sphere-like ZnO NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray analysis (EDX), and their H2S sensing performance were measured at room temperature. Testing results indicate that the ZnO NPs exhibit excellent response to H2S gas at room temperature. The response value of the optimal sample to 750 ppb H2S is 73.3%, the detection limit reaches to 30 ppb, and the response value is 7.5%. Furthermore, the effects of the calcining time and thickness of the film on the gas-sensing performance were investigated. Both calcining time and film thickness show a negative correlation with the H2S sensing performance. The corresponding reaction mechanism of H2S detection was also discussed.
Keywords:  ZnO      H2S gas sensor      room temperature  
Received:  03 September 2020      Revised:  02 November 2020      Accepted manuscript online:  01 December 2020
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  77.55.hf (ZnO)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904209 and 61904098), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019QF018), and Higher Education Research and Development Program of Shandong Province, China (Grant No. J18KA242).
Corresponding Authors:  These authors contributed equally to the work. Corresponding author. E-mail: yingc@sdut.edu.cn §Corresponding author. E-mail: liub@sdut.edu.cn   

Cite this article: 

Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波) In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature 2021 Chin. Phys. B 30 020701

1 Sett D and Basak D 2016 Sens. Actuators B. Chem. 243 475
2 Broza Y Y, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W and Haick H 2019 Chem. Rev. 119 11761
3 Hu W, Wan L, Jian Y, Ren C, Jin K, Su X, Bai X, Haick H, Yao M and Wu W 2019 Adv. Mater. Technol. 4 1800488
4 Zhao G, Sun M, Liu X, Xuan J, Kong W, Zhang R, Sun Y, Jia F, Yin G and Liu B 2019 Electrochim. Acta 304 334
5 Lupan O, Postica V, Labat F, Ciofini I, Pauporté T and Adelung R 2018 Sens. Actuators B. Chem. 254 1259
6 Yang T, Jin W, Liu Y, Li H, Yang S and Chen W 2018 Appl. Surf. Sci. 457 975
7 Chitra M, Uthayarani K, Rajasekaran N, Neelakandeswari N, Girija E K and Pathinettam Padiyan D 2015 Chin. Phys. Lett. 32 078101
8 Sun M, Liu X, Zhao G, Kong W, Xuan J, Tan S, Sun Y, Wei S, Ren J and Yin G 2019 J. Power Source 430 80
9 Zhao G, Xuan J, Liu X, Jia F, Sun Y, Sun M, Yin G and Liu B 2019 Nanomaterials 9 435
10 Na H B, Zhang X F, Deng Z P, Xu Y M, Huo L H and Gao S 2019 ACS Appl. Mater. Interfaces 11 11627
11 Li S, Liu A, Yang Z, Zhao L, Wang J, Liu F, You R, He J, Wang C, Yan X, Sun P, Liang X and Lu G 2019 Sens. Actuators B. Chem. 289 252
12 Wu Y, Hu M and Tian Y 2017 Chin. Phys. B 26 020701
13 Zhao G, Xuan J, Gong Q, Wang L, Ren J, Sun M, Jia F, Yin G and Liu B 2020 ACS Appl. Mater. Interfaces 12 8573
14 Li X, Qin L, Zhang J, Ren M, An J, Yang X and Xu X 2017 Chin. Phys. Lett. 34 034211
15 Zhang Y, Xie L, Li H, Wang P, Liu S, Peng Y and Zhang M 2015 Chin. Phys. Lett. 32 098103
16 Wang S, Jia F, Wang X, Hu L, Sun Y, Yin G, Zhou T, Feng Z, Kumar P and Liu B 2020 ACS Omega 5 5209
17 Hosseini Z S, Mortezaali A, Iraji zad A and Fardindoost S 2015 J. Alloys Compd. 628 222
18 Zhu L and Zeng W 2017 Sens. Actuators, A Phys. 267 242
19 Mourad S, Ghoul J EI, Omri K and Khirouni K 2019 Chin. Phys. B 28 047701
20 Ma Q, Wang H, Zhang S, Chen X and Wang T 2019 Acta Phys. Sin. 68 158501 (in Chinese)
21 Liu X, Du B, Sun Y, Yu M, Yin Y, Tang W, Chen C, Sun L, Yang B and Cao W Ashfold M N R 2016 ACS Appl. Mater. Interfaces 8 16379
22 Vuong N M, Chinh N D, Hien T T, Quang N D, Kim D, Kim H, Yoon S G and Kim D 2016 J. Nanosci. Nanotechnol. 16 10346
23 Patil V L, Vanalakar S A, Patil P S and Kim J H 2017 Sens. Actuators B. Chem. 239 1185
24 Deng J, Fu Q, Luo W, Tong X, Xiong J, Hu Y and Zheng Z 2016 Sens. Actuators, B Chem. 224 153
25 Zhai J, Wang L, Wang D, Li H, Zhang Y, He D and Xie T 2011 ACS Appl. Mater. Interfaces 3 2253
26 Cao J, Dou H, Zhang H, Mei H, Liu S, Fei T, Wang R, Wang L and Zhang T 2014 Sens. Actuators B Chem. 198 180
27 Hieu H N, Vuong N M, Jung H, Jang D M, Kim D, Kim H and Hong S K 2012 J. Mater. Chem. 22 1127
28 Ahn M W, Park K S, Heo J H, Park J G, Kim D W, Choi K J, Lee J H and Hong S H 2008 Appl. Phys. Lett. 93 263103
29 Deng J, Fu Q and Luo W 2016 Sens. Actuators B: Chem 224 153
30 Huang H, Xu P and Zheng D 2015 J. Mater. Chem. A 3 6330
31 Kaur M, Ganapathi K, Mukund V, Jain C, Ramgir N, Datta N, Bhattacharya S, Debnath A, Aswal D and Gupta S 2014 Mater. Chem. Phys. 143 1319
32 Meng F, Zhao G and Zhang H 2013 Nanosci. Nanotechnol. Lett. 5 1012
33 Feng P, Wan Q and Wang T H 2009 Appl Phys. Lett. 87 213111
34 Lee H, Ahn K, Lee S, Kim J, Kim H, Jeong S and Cho C 2011 Appl. Phys. Lett. 98 193114
35 Kokes R J 1962 J. Phys. Chem. 66 99
36 Tench A J and Lawson T 1971 Chem. Phys. Lett. 8 177
37 Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
38 Li Y Y, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304
39 Tong X, Shen W, Chen X and Corriou J P 2017 Ceram. Int. 43 14200
40 Kwon Y, Kim H, Lee S, Chin I J, Seong T Y, Lee W I and Lee C 2012 Sens. Actuators B Chem. 173 441
41 Barsan N and Weimar U 2001 J. Electroceramics. 7 143
42 Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247
43 Mani G K and Rayappan J B B 2015 Mater. Lett. 158 373
44 Nimbalkar A R and Patil M G 2017 Physica B 527 7
45 Wang D, Chu X and Gong M 2007 Nanotechnology 18 185601
46 Kim J and Yong K 2011 J. Phys. Chem. C 115 7218
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[5] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[6] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[10] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[11] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[12] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[13] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[14] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[15] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
No Suggested Reading articles found!