Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117305    DOI: 10.1088/1674-1056/ab9de3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3

Q Mahmood1,2, †, N A Noor3, T Ghrib1,2, Nessrin A Kattan4, Asif Mahmood5,, ‡, and Shahid M Ramay6
1 Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441, Dammam, Saudi Arabia
2 Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441, Dammam, Saudi Arabia
3 Department of Physics, Riphah International University, Lahore, Pakistan
4 Department of Physics, Faculty of Science, Taibah University, Medina, Saudi Arabia
5 Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
6 Physics and Astronomy Department, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
Abstract  

The electronic and thermoelectric properties of alkali metal-based fluorides CsYbF3 and RbYbF3 are studied by using Wien2k and BoltzTraP codes. The structural and thermodynamic stability of these materials are confirmed by tolerance factor (0.94 and 0.99 for RbYbF3 and CsYbF3) and negative formation energy. The optimized lattice constants and bulk moduli are consistent with the results reported in the literature. The reported band gap for RbYbF3 is 0.86 eV which decreases to 0.83 eV by the replacement of Cs with Rb. The electrical and thermal conductivities along with Seebeck coefficients decrease with temperature rising from 0 K to 800 K. The large values of thermoelectric parameters for positive chemical potentials show that the character is dominated by electrons. The studied materials have figures of merit 0.82 and 0.81 at room temperature respectively, for RbYbF3 and CsYbF3 and increase with temperature rising. Therefore, the materials under study may have potential application values in thermoelectric generators and refrigerators.

Keywords:  density functional theory      thermodynamic stability      electrical conductivity      figure of merit  
Received:  03 May 2020      Revised:  04 May 2020      Accepted manuscript online:  18 June 2020
Fund: Two of the authors, Asif Mahmood and S M Ramay, were supported by the Deanship of Scientific Research at King Saud University (Grant No. RGP-311).
Corresponding Authors:  Corresponding author. E-mail: qmmustafa@iau.edu.sa Corresponding author. E-mail: ahayat@ksu.edu.sa   

Cite this article: 

Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3 2020 Chin. Phys. B 29 117305

Fig. 1.  

(a) Electronic structures, (b) energy band structure, figures of merit of (c) CsYbF3, (d) RbYbF3, and (e) calculated crystal structure of Rb/CsYbF3 formed by Xcrysden.

Fig. 2.  

Plot of optimized energy verses volume of CsYbF3 (red) and RbYbF3 (black) calculated by PBEsol approximation.

Parameter RbYbF3 CsYbF3
a0 4.60, 4.53a 4.67, 4.61a
B0/GPa 41.86 37.62
Δ H/(eV/unit cell) −2.50 −2.26
Band gap Eg(ΓΓ)/eV 0.86 0.83
Table 1.  

The calculated values of lattice constant a, bulk moduli B, enthalpy of formation Δ H, and band gap of fluoride-based perovskites RbYbF3 and CsYbF3.

Fig. 3.  

Electronic band structures of (a) RbYbF3 and (b) CsYbF3 calculated by PBEsol+mBJ potential.

Fig. 4.  

Electrical conductivity of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Fig. 5.  

Thermal conductivity of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Fig. 6.  

Seebeck coefficient of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Fig. 7.  

Power factor of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Fig. 8.  

Figure of merit (ZT) of RbYbF3 and CsYbF3 against (a) chemical potential and (b) temperature.

Perovskites σ/1018 (Ω ⋅ m ⋅ s)−1 κ/1014 (W/mK)−1 S/(μV/K) σS2/1012 (W/mK2 ⋅ s) ZT
RbYbF3 3.76 0.230 130.44 0.639 0.82
CsYbF3 3.86 0.235 128.60 0.638 0.81
Table 2.  

Calculated room temperature values of electrical conductivity (σ), thermal conductivity (κ), Seebeck coefficient (S), power factor (σ S2), and figure of merit (ZT) for fluoride-based perovskites RbYbF3 and CsYbF3.

[1]
Mathur N, andwood P L 2003 Phys. Today 56 25
[2]
Moskvin S, Makhnev A A, Nomerovannaya L V, Loshkareva N N, Balbashov A M 2010 Phys. Rev. B 82 035106 DOI: 10.1103/PhysRevB.82.035106
[3]
Weeks C, Franz M 2010 Phys. Rev. B 82 085310 DOI: 10.1103/PhysRevB.82.085310
[4]
Murtaza G, Ahmad I, Amin B, Afaq A, Maqbool M, Maqssod J, Khan I, Zahid M 2011 Opt. Mater. 33 553 DOI: 10.1016/j.optmat.2010.10.052
[5]
Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945 DOI: 10.1126/science.286.5441.945
[6]
Klauk H 2000 Phys. World 13 18
[7]
Ramesh R, Spaklin N A 2007 Nat. Mater. 6 21 DOI: 10.1038/nmat1805
[8]
Scott J F 2006 J. Phys.: Condens. Matter 18 R361
[9]
Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31 DOI: 10.1007/s10853-005-5915-7
[10]
Dar S A, Srivastava V, Sakalle U K, Parey V, Pagare G 2017 Mater. Res. Express 4 106104 DOI: 10.1088/2053-1591/aa90af
[11]
Huang K, Feng M, Goodenough J, Milliken C 1997 J. Electrochem. Soc. 144 3620 DOI: 10.1149/1.1838058
[12]
Rao K, Yoon K 2003 J. Mater. Sci. 383 91
[13]
Murtaza G, Ahmad I 2011 Physica B 406 3222 DOI: 10.1016/j.physb.2011.05.028
[14]
Murtaza G, Ahmad I, Maqbool M, Rahnamaye-Aliabad H A, Afaq A 2011 Chin. Phys. Lett. 281 17803
[15]
Ghebouli B, Ghebouli M A, Fatmi M, Bouhemodou A 2010 Solid State Commun. 150 1896 DOI: 10.1016/j.ssc.2010.07.041
[16]
Erum N, Iqbal M A 2017 Chin. Phys. B 26 047102 DOI: 10.1088/1674-1056/26/4/047102
[17]
Heaton R A, Harrison J G, Lin C C 1983 Phys. Rev. B 28 5992 DOI: 10.1103/PhysRevB.28.5992
[18]
Erickson E M, Ghanty C, Aurbach D 2014 J. Phys. Chem. Lett. 5 3313 DOI: 10.1021/jz501387m
[19]
Bai Y, Yu H, Zhu Z, Jiang K, Zhang T, Zhao N, Yang S, Yan H 2015 J. Mater. Chem. A 3 9098 DOI: 10.1039/C4TA05309E
[20]
Moreira R L, Dias A 2007 Phys. Chem. Solids 681 617
[21]
Wu G Q, Hoppe R 1983 Z. Anorp;. Allg. Chemie 504 55
[22]
Verma A S, Kumar A 2012 J. Alloys Compd. 541 210 DOI: 10.1016/j.jallcom.2012.07.027
[23]
Jiang L Q, Guo J K, Liu H B, Zhu M, Zhou X, Wu P, Li C H 2006 Phys. Chem. Solids 67 1531 DOI: 10.1016/j.jpcs.2006.02.004
[24]
Verma A S, Jindal V K 2009 J. Alloys Compd. 485 514 DOI: 10.1016/j.jallcom.2009.06.001
[25]
Ubic R 2007 J. Am. Ceram. Soc. 90 3326 DOI: 10.1111/jace.2007.90.issue-10
[26]
Li J F, Liu WS, Zhao L D, Zhou M 2010 NPG Asia Mater. 2 152 DOI: 10.1038/asiamat.2010.138
[27]
Zhao L D, Berardan D, Pei Y L, Byl C, Pinsard-Gaudart L, Dragoe N 2010 Appl. Phys. Lett. 97 092118 DOI: 10.1063/1.3485050
[28]
Dehkordi A M, Zebarjadi M, He J, Tritt T M 2015 Mater. Sci. Eng. R Rep. 97 1 DOI: 10.1016/j.mser.2015.08.001
[29]
Goldsmid H J 2010 Introduction to Thermoelectricity Berlin, Heidelberg Springer-Verlag DOI: 10.1016/j.physb.2017.07.044
[30]
Rahman G, Rahman A U 2017 Physica B 526 122 DOI: 10.1016/j.physb.2017.07.044
[31]
Amin B, Singh N, Tritt T M, Alshareef H N, Schwingenschlögl U 2013 Appl. Phys. Lett. 103 031907 DOI: 10.1063/1.4815928
[32]
Li H, Tang X, Zhang Q, Uher C 2009 Appl. Phys. Lett. 94 10114
[33]
Nam W H, Kim B B, Seo S G, Lim Y S, Kim J Y, Seo W S, Choi W K, Park H H, Lee J Y 2014 Nano Lett. 14 5104 DOI: 10.1021/nl5018089
[34]
Mallada C, Menendez J L, Dura O J, de la Torre M A R, Menendez R, Santamaria R 2017 J. Eur. Ceram. Soc. 37 3741 DOI: 10.1016/j.jeurceramsoc.2017.02.027
[35]
Blaha P, Schwarz K, Madsen G K, Kvasnicka D, Luitz J 2001 Wien2k An augmented plane wave+ local orbitals program for calculating crystal properties
[36]
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244 DOI: 10.1073/pnas.30.9.244
[37]
Blaha P, Schwarz K, Sorantin P, Trickey S K 1990 Comput. Phys. Commun. 59 339
[38]
Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116 DOI: 10.1103/PhysRevB.73.235116
[39]
Becke A D 1988 Phys. Rev. A 38 3098 DOI: 10.1103/PhysRevA.38.3098
[40]
Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401 DOI: 10.1103/PhysRevLett.102.226401
[41]
Madsen G K, Singh D J 2006 Comput. Phys. Commun. 175 67 DOI: 10.1016/j.cpc.2006.03.007
[42]
Ullah R, Ali M A, Murad S, Khan A, Dar S A, Mahmood I, Laref A 2019 Mater. Res. Express 6 125901 DOI: 10.1088/2053-1591/ab540e
[43]
Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G 2019 Inorganic chemistry 17 656
[44]
Young J, Rondinelli 2016 J. Phys. Chem. Lett. 7 918 DOI: 10.1021/acs.jpclett.6b00094
[45]
Mahmood Q, Hassan M, Noor N A 2016 J. Phys.: Condens. Matter 28 506001 DOI: 10.1088/0953-8984/28/50/506001
[46]
Sabir B, Murtaza G, Mahmood Q, Ahmad R, Bhamu K C 2017 Current Appl. Phys. 17 1539
[47]
Madsen G K H, Schwarz K, Singh D J 2006 Comput. Phys. Commun. 175 67 DOI: 10.1016/j.cpc.2006.03.007
[48]
Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V, Sofo J O 2003 Phys. Rev. B 68 125210 DOI: 10.1103/PhysRevB.68.125210
[49]
Bilal M, Saifullah Shafiq M, Khan B, Aliabad H A R, Asadabadi S J, Ahmed R, Ahmad I 2015 Phys. Lett. A 379 206 DOI: 10.1016/j.physleta.2014.11.016
[50]
Hassan M, Shahid A, Mahmood Q 2018 Solid State Commun. 270 92 DOI: 10.1016/j.ssc.2017.11.019
[51]
Mahmood Q, Hassan M, Ahmed S H A, Shahid A, Laref A 2018 J. Phys. Chem. Solid 20 87
[52]
Yasukawa M, Kono T, Ueda K, Yanagi H, Kim S W, Hosono H 2013 Solid State Commun. 172 49 DOI: 10.1016/j.ssc.2013.08.018
[53]
Hassan M, Mahmood Q, Ramay S M 2019 Mater. Res. Express 6 126110 DOI: 10.1088/2053-1591/ab5b3b
[1] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[2] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[3] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[4] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[5] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[6] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[7] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[8] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[9] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[10] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[11] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[12] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[13] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[14] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[15] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
No Suggested Reading articles found!