Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097801    DOI: 10.1088/1674-1056/ab969e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Computation and analysis of light emission in two-bubble sonoluminescence

Jin-Fu Liang(梁金福)1, Xue-You Wu(吴学由)1, Yu An(安宇)2, Wei-Zhong Chen(陈伟中)3, Jun Wang(王军)4
1 School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China;
2 Department of Physics, Tsinghua University, Beijing 100084, China;
3 Institution of Acoustics, Nanjing University, Nanjing 210093, China;
4 School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
Abstract  We perform a computational simulation of light emissions from two sonoluminescent bubbles in water. Our simulation includes the radii of two bubbles, radiation acoustic pressures, and light emission spectra by numerically solving the pulsing equations of a two-bubble system and the equations of gas dynamics. The simulation results demonstrate that the motion of each bubble in the two-bubble system is restrained because of the radiation acoustic pressures from the other pulsing bubble. The restrained oscillation of a bubble with a small ambient radius is stronger than that of a bubble with a large ambient radius under the same driving acoustic pressure. This effect increases when the distance between the two bubbles decreases. When compared to single-bubble sonoluminescence, the interaction between two bubbles leads to generation of different spectral characteristics.
Keywords:  two-bubble sonoluminescence      radiation acoustic pressure      spectra  
Received:  11 April 2020      Revised:  11 May 2020      Published:  05 September 2020
PACS:  78.60.Mq (Sonoluminescence, triboluminescence)  
  47.55.dd (Bubble dynamics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11864007 and 11564006) and the Science and Technology Planning Project of Guizhou Province of China (Grant No. [2018]5769).
Corresponding Authors:  Jin-Fu Liang     E-mail:  liang.shi2007@163.com

Cite this article: 

Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军) Computation and analysis of light emission in two-bubble sonoluminescence 2020 Chin. Phys. B 29 097801

[1] Putterman S J and Weninger K R 2000 Annu. Rev. Fluid Mech. 32 445
[2] Suslick K S, Eddingsaas N C, Flannigan D J, Hopkins S D and Xu H 2018 Acc. Chem. Res. 51 2169
[3] Brenner M P, Hilgenfeldt S and Lohse D 2002 Rev. Mod. Phys. 74 425
[4] Suslick K S and Flannigan D J 2008 Annu. Rev. Phys. Chem. 59 659
[5] Gaitan D F, Crum L A, Church C C and Roy R A 1992 J. Acoust. Soc. Am. 91 3166
[6] Frenzel H and Schultes H 1934 Z. Phys. Chem. B 27 421
[7] An Y 2011 Phys. Rev. E 83 066313
[8] Neppiras E A 1980 Phys. Rep. 61 159
[9] Flannigan D J and Suslick K S 2012 J. Phys. Chem. Lett. 3 2401
[10] Bjerknes V 1906 Fields of Force (New York: Columbia University Press)
[11] Crum L 1975 J. Acoust. Soc. Am. 57 1363
[12] Oguz H N and Prosperetti A 1990 J. Fluids Mech. 218 143
[13] Mettin R, Akhatov I, Parlitz U, Ohl C D and Lauterborn W 1997 Phys. Rev. E 56 2924
[14] Doinikov A A 1999 J. Acoust. Soc. Am. 106 3305
[15] Doinikov A A 2002 J. Acoust. Soc. Am. 111 1602
[16] Barbat T, Ashgriz N and Liu C S 1999 J. Fluid Mech. 389 137
[17] Rasoul S B, Nastaran R, Homa E and Mona M 2010 Phys. Rev. E 82 016316
[18] Eruihara K, Hay T A, Ilinskii Y, Zabolotskaya E and Hamilton M 2011 J. Acoust. Soc. Am. 130 3357
[19] Liang J, Chen W Z, Shao W H and Qi S B 2012 Chin. Phys. Lett. 29 074701
[20] Liang J, Wang X, Yang J and Gong L 2017 Ultrasonics 75 58
[21] Pu Z, Zhang W, Shi K R, Zhang J H and Wu Y L 2005 J. Tsinghua University 45 1450 (in Chinese)
[22] Ross D 1976 Mechanics of Under Water Noise (New York: Pergamon Press)
[23] An Y 2006 Phys. Rev. E 74 026304
[24] An Y and Li C 2008 Phys. Rev. E 78 046313
[25] An Y and Li C 2009 Phys. Rev. E 80 046320
[26] Liang J and An Y 2017 Phys. Rev. E 96 063118
[27] Liang J, An Y and Chen W 2019 Ultrason. Sonochem. 58 104688
[28] Pflieger R, Brau H P and Nikitenko S 2010 Chem. Eur. J. 16 11801
[29] Yasui K 2001 Phys. Rev. E 64 016310
[30] Zhang W J and An Y 2015 Chin. Phys. B 24 047802
[1] Beam steering characteristics in high-power quantum-cascade lasers emitting at ∼ 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[2] Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D-D experiment on EAST tokamak
Wei Gao(高伟), Juan Huang(黄娟), Jianxun Su(宿建勋), Jing Fu(付静), Yingjie Chen(陈颖杰), Wei Gao(高伟), Zhenwei Wu(吴振伟), and EAST Team. Chin. Phys. B, 2021, 30(2): 025201.
[3] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[4] R-branch high-lying transition emission spectra of SbNa molecule
Chun-Run Luo(罗春润), Qun-Chao Fan(樊群超), Zhi-Xiang Fan(范志祥), Jia Fu(付佳), Jie Ma(马杰), Hui-Dong Li(李会东), and Yong-Gen Xu(徐勇根). Chin. Phys. B, 2021, 30(1): 013301.
[5] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[6] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[7] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[8] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[9] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[10] Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy
Lan Yang(杨岚), Miao Liu(刘淼), Yi-Tong Liu(刘奕彤), Qing-Xue Li(李庆雪), Su-Yu Li(李苏宇), Yuan-Fei Jiang(姜远飞), An-Min Chen(陈安民), Ming-Xing Jin(金明星). Chin. Phys. B, 2020, 29(6): 065203.
[11] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[12] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[13] Filling gap of combination of gauge and analytical method in KFR-like theory
Jian Li(李健), Feng-Cai Ma(马凤才). Chin. Phys. B, 2020, 29(4): 043205.
[14] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[15] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
No Suggested Reading articles found!