Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017303    DOI: 10.1088/1674-1056/28/1/017303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors

Dong Zhang(张东)1, Chenfei Wu(武辰飞)1, Weizong Xu(徐尉宗)1, Fangfang Ren(任芳芳)1, Dong Zhou(周东)1, Peng Yu(于芃)2, Rong Zhang(张荣)1, Youdou Zheng(郑有炓)1, Hai Lu(陆海)1
1 School of Electronic Science and Engineering, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210093, China;
2 State Grid Shandong Electric Power Research Institute, Jinan 250001, China
Abstract  

Self-heating effect in amorphous InGaZnO thin-film transistors remains a critical issue that degrades device performance and stability, hindering their wider applications. In this work, pulsed current-voltage analysis has been applied to explore the physics origin of self-heating induced degradation, where Joule heat is shortly accumulated by drain current and dissipated in repeated time cycles as a function of gate bias. Enhanced positive threshold voltage shift is observed at reduced heat dissipation time, higher drain current, and increased gate width. A physical picture of Joule heating assisted charge trapping process has been proposed and then verified with pulsed negative gate bias stressing scheme, which could evidently counteract the self-heating effect through the electric-field assisted detrapping process. As a result, this pulsed gate bias scheme with negative quiescent voltage could be used as a possible way to actively suppress self-heating related device degradation.

Keywords:  amorphous InGaZnO thin-film transistor      self-heating effect      threshold voltage shift      pulsed negative gate bias  
Received:  27 July 2018      Revised:  26 October 2018      Published:  05 January 2019
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  73.61.Jc (Amorphous semiconductors; glasses)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2016YFB0400100), the National Natural Science Foundation of China (Grant No. 91850112), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Science and Technology Project of State Grid Corporation of China (Grant No. SGSDDK00KJJS1600071), and the Fundamental Research Funds for the Central Universities, China (Grant No. 14380098).

Corresponding Authors:  Weizong Xu, Hai Lu     E-mail:  wz.xu@nju.edu.cn;hailu@nju.edu.cn

Cite this article: 

Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海) Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors 2019 Chin. Phys. B 28 017303

[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[2] Hung M C, Hsiao H T, Lin W T, Tu C H, Chang J J and Chen P L 2011 Jpn. J. Appl. Phys. 50 03CB07
[3] Park J S, Jeong J K, Mo Y G, Kim H D and Kim S I 2007 Appl. Phys. Lett. 90 262106
[4] Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M and Hosono H 2006 Jpn. J. Appl. Phys. 45 4303
[5] Li M, Lan L, Xu M, Wang L, Xu H, Luo D, Zou J, Tao H, Yao R and Peng J 2011 J. Phys. D: Appl. Phys. 44 455102
[6] Lee J H, Kim D H, Yang D J, Hong S Y, Yoon K S, Hong P S, Jeong C O, Park H S, Kim S Y, Lim S K, Kim S S, Son K S, Kim T S, Kwon J Y and Lee S Y 2008 SID Symp. Dig. Tech. Papers (London: Blackwell Publishing Ltd) p. 625
[7] Jeong J K, Jeong J H, Choi J H, Im J S, Kim S H, Yang H W, Kang K N, Kim K S, Ahn T K, Chung H J, Kim M, Gu B S, Park J S, Mo Y G, Kim H D and Kim M 2008 SID Symp. Dig. Tech. Papers (London: Blackwell Publishing Ltd) p. 1
[8] Huang S Y, Chang T C, Yang M C, Lin L W, Wu M H, Yang K H, Chen M C, Chiu Y J and Yeh B L 2012 Appl. Phys. Lett. 101 253502
[9] Park J S, Jeong J K, Chung H J, Mo Y G and Kim H D 2008 Appl. Phys. Lett. 92 072104
[10] Ryu B, Noh H K, Choi E A and Chang K J 2010 Appl. Phys. Lett. 97 022108
[11] Chen T C, Chang T C, Hsieh T Y, Tsai M Y, Chen Y T, Chung Y C, Ting H C and Chen C Y 2012 Appl. Phys. Lett. 101 042101
[12] Hsieh T Y, Chang T C, Chen T C, Chen Y T, Tsai M Y, Chu A K, Chung Y C, Ting H C and Chen C Y 2013 IEEE Electron Device Lett. 34 63
[13] Hsieh T Y, Chang T C, Chen T C, Tsai M Y, Chen Y T, Chung Y C, Ting H C and Chen C Y 2012 Appl. Phys. Lett. 100 232101
[14] Kise K, Fujii M N, Bermundo J P, Ishikawa Y and Uraoka Y 2018 IEEE Electron Device Lett. 39 1322
[15] Nguyen M C, On N, Ji H, Nguyen A H T, Choi S, Cheon J, Yu K M, Cho S Y, Kim J K, Kim S, Jeong J and Choi R 2018 IEEE Trans. Electron. Devices 65 2492
[16] Huang X M, Wu C F, Lu H, Ren F F, Chen D J, Liu Y, Yu G, Zhang R, Zheng Y D and Wang Y J 2014 IEEE Electron Device Lett. 35 1034
[17] Huang X M, Wu C F, Lu H, Ren F F, Chen D J, Zhang R and Zheng Y D 2013 Appl. Phys. Lett. 102 193505
[18] Hsieh T Y, Chang T C, Chen T C, Chen Y T, Tsai M Y, Chu A K, Chung Y C, Ting H C and Chen C Y 2012 IEEE Trans. Electron. Devices 59 3389
[19] Huang X M, Zhou D, Xu W Z and Wang Y J 2018 J. Vac. Sci. Technol. B 36 040601
[20] Wang M, Yan D, Zhang C, Xie B, Wen C P, Wang J, Hao Y, Wu W and Shen B 2014 IEEE Electron Device Lett. 35 1094
[21] Lee S M, Cho W J and Park J T 2014 IEEE Trans. Device Mater. Reliability 14 471
[22] Liu K H, Chang T C, Wu M S, Hung Y S, Hung P H, Hsieh T Y, Chou W C, Chu A K, Sze S M and Yeh B L 2014 Appl. Phys. Lett. 104 133503
[23] Park S, Cho E N and Yun I 2013 IEEE Trans. Electron. Devices 60 1689
[24] Fujii M, Ishikawa Y, Horita M and Uraoka Y 2011 Appl. Phys. Express 4 104103
[1] A technique for simultaneously improving the product of cutoff frequency-breakdown voltage and thermal stability of SOI SiGe HBT
Qiang Fu(付强), Wan-Rong Zhang(张万荣), Dong-Yue Jin(金冬月), Yan-Xiao Zhao(赵彦晓), Xiao Wang(王肖). Chin. Phys. B, 2016, 25(12): 124401.
[2] Non-depletion floating layer in SOI LDMOS for enhancing breakdown voltage and eliminating back-gate bias effect
Zheng Zhi, Li Wei, Li Ping. Chin. Phys. B, 2013, 22(4): 047701.
[3] Compound buried layer SOI high voltage device with a step buried oxide
Wang Yuan-Gang, Luo Xiao-Rong, Ge Rui, Wu Li-Juan, Chen Xi, Yao Guo-Liang, Lei Tian-Fei, Wang Qi, Fan Jie, Hu Xia-Rong. Chin. Phys. B, 2011, 20(7): 077304.
[4] Evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistors by structure function method
Zhang Guang-Chen, Feng Shi-Wei, Zhou Zhou, Li Jing-Wan, Guo Chun-Sheng. Chin. Phys. B, 2011, 20(2): 027202.
[5] Partial-SOI high voltage P-channel LDMOS with interface accumulation holes
Wu Li-Juan, Hu Sheng-Dong, Luo Xiao-Rong, Zhang Bo, Li Zhao-Ji. Chin. Phys. B, 2011, 20(10): 107101.
[6] A new structure and its analytical model for the vertical interface electric field of a partial-SOI high voltage device
Hu Sheng-Dong, Zhang Bo, Li Zhao-Ji, Luo Xiao-Rong. Chin. Phys. B, 2010, 19(3): 037303.
[7] Electrical characteristics of SiGe-on-insulator nMOSFET and SiGe-silicon-on-aluminum nitride nMOSFET
Liu Hong-Xia, Li Bin, Li Jin, Yuan Bo, Hao Yue. Chin. Phys. B, 2010, 19(12): 127303.
[8] A new physics-based self-heating effect model for 4H-SiC MESFETs
Cao Quan-Jun, Zhang Yi-Men, Zhang Yu-Ming. Chin. Phys. B, 2008, 17(12): 4622-4626.
No Suggested Reading articles found!