Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026101    DOI: 10.1088/1674-1056/23/2/026101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of annealing process on characteristics of fully transparent zinc tin oxide thin-film transistor

Chen Yong-Yue, Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen
Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Abstract  Annealing effect on the performance of fully transparent thin-film transistor (TTFT), in which zinc tin oxide (ZnSnO) is used as the channel material and SiO2 as the gate insulator, is investigated. The ZnSnO active layer is deposited by radio frequency magnetron sputtering while a SiO2 gate insulator is formed by plasma-enhanced chemical vapor deposition. The saturation field-effect mobility and on/off ratio of the TTFT are improved by low temperature annealing in vacuum. Maximum saturation field-effect mobility and on/off ratio of 56.2 cm2/(V·s) and 3×105 are obtained, respectively. The transfer characteristics of the ZnSnO TFT are simulated using an analytical model and good agreement between measured and the calculated transfer characteristics is demonstrated.
Keywords:  zinc tin oxide      thin-film transistors      mobility      annealing  
Received:  27 December 2012      Revised:  23 July 2013      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  68.55.ag (Semiconductors)  
  73.61.Ga (II-VI semiconductors)  
  78.66.Hf (II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61290305 and 91021020) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Z6100117).
Corresponding Authors:  Wu Hui-Zhen     E-mail:  hzwu@zju.edu.cn
About author:  61.66.Dk; 68.55.ag; 73.61.Ga; 78.66.Hf

Cite this article: 

Chen Yong-Yue, Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen Effects of annealing process on characteristics of fully transparent zinc tin oxide thin-film transistor 2014 Chin. Phys. B 23 026101

[1] Wang L, Yoon M H, Lu G, Yang Y, Facchetti A and Marks T J 2006 Nat. Mater. 5 893
[2] Oh M S, Han J I, Lee K, Lee B H, Sung M M and Im S 2010 Electrochem. Solid-State Lett. 13 194
[3] Carcia P F, McLean R S, Reilly M H and Nunes J G 2003 Appl. Phys. Lett. 82 1117
[4] Fortunato E, Barquinha P, Pimentel A, Gonçalves A, Marques A, Pereira L and Martins R 2005 Thin Solid Films 487 205
[5] Zhu X, Wu H, Wang S, Zhang Y, Cai C, Si J, Yuan Z, Du X and Dong S 2009 J. Semicond. 30 033001
[6] Sun C, Mathews N, Zheng M, Sow C H, Wong L H and Mhaisalkar S G 2010 J. Phys. Chem. C 114 1331
[7] Presley R E, Munsee C L, Park C H, Hong D, Wager J F and Keszler D A 2004 J. Phys. D: Appl. Phys. 37 2810
[8] Dehuff N L, Kettenring E S, Hong D, Chiang H Q, Wager J F, Hoffman R L, Park C H and Keszler D A 2005 J. Appl. Phys. 97 064505
[9] Paine D C, Yaglioglu B, Beiley Z and Lee S 2008 Thin Solid Films 516 5894
[10] Cai X K, Yuan Z J, Zhu X M, Wang X, Zhang B P, Qiu D J and Wu H Z 2011 Chin. Phys. B 20 106103
[11] Lim W, Douglas E A, Lee J, Jang J, Craciun V, Norton D P, Pearton S J, Ren F, Son S Y, Yuh J H, Shen H and Chang W 2009 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 27 2128
[12] Huang H Q, Sun J, Liu F J, Zhao J W, Hu Z F, Li Z J, Zhang X Q and Wang Y S 2011 Chin. Phys. Lett. 28 128502
[13] Satoh K, Kakehi Y, Okamoto A, Murakami S, Moriwaki K and Yotsuya T 2008 Thin Solid Films 516 5814
[14] Jayaraj M K, Saji K J, Nomura K, Kamiya T and Hosono H 2008 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 26 495
[15] Gorrn P, Lehnhardt M, Riedl T and Kowalsky W 2007 Appl. Phys. Lett. 91 193504
[16] Seo Seok-Jun, Choi C G, Hwang Y H and Bae Byeong-Soo 2009 J. Phys. D: Appl. Phys. 42 035106
[17] Jackson W B, Hoffman R L and Herman G S 2005 Appl. Phys. Lett. 87 193503
[18] Chiang H Q, Wager J F, Hoffman R L, Jeong J and Keszler D A 2005 Appl. Phys. Lett. 86 013503
[19] Cross R B M, Souza M M D, Deane S C and Young N D 2008 IEEE Trans. Electron Dev. 55 1109
[20] Bae H S, Kim J H and Im S 2004 Solid-State Lett. 7 279
[21] Oh B Y and Jeong M C 2007 Semicond. Sci. Technol. 22 608
[22] Zhang L, Zhang H, Bai Y, Ma J W, Cao J, Jiang X Y and Zhang Z L 2008 Solid State Commun. 146 387
[23] Triska J, Conley J F, Presley R and Wager J F 2009 Integrated Reliability Workshop Final Report, 2009, IRW ’09, IEEE International 86
[24] Wager J F 2010 Journal of the Society for Information Display 18/10 749
[25] Zhang L, Li J, Zhang X W, Jiang X Y and Zhang Z L 2010 Thin Solid Films 518 6130
[26] Chiang H Q, McFarlane B R, Hong D, Presley R E and Wager J F 2008 J. Non-Cryst. Solids 354 2826
[27] Moriga T, Hayashi Y, Kondo K, Nishimura Y, Murai K, Nakabayashi I, Fukumoto H and Tominaga K 2004 J. Vac. Sci. Technol. A 22 1705
[28] Lee S, Bierig B and Paine D C 2012 Thin Solid Films 520 3764
[29] Barquinha P, Gonçalves G, Pereira L, Martins R and Fortunato E 2007 Thin Solid Films 515 8450
[30] Shur M S, Slade H C, Jacunski M D, Owusu A A and Ytterdal T 1997 J. Electrochem. Soc. 144 2833
[31] Abe K, Kaji N, Kumomi H, Nomura K, Kamiya T, Hirano M and Hosono H 2011 IEEE Trans. Electron Dev. 58 3463
[32] Shur M, Hack M and Shaw J G 1989 J. Appl. Phys. 66 3371
[33] Colalongo L 2001 Solid-State Electronics 45 1525
[34] Servati P and Nathan A 2002 IEEE Trans. Electron Dev. 49 812
[35] Zhang A, Zhao X R, Duan L B, Liu J M and Zhao J L 2011 Chin. Phys. B 20 057201
[1] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[2] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[3] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[4] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[5] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[6] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[7] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[8] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[9] Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect
Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿). Chin. Phys. B, 2021, 30(1): 018102.
[10] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[11] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[12] Facile and fast growth of high mobility nanoribbons of ZrTe5
Jingyue Wang(王璟岳), Jingjing Niu(牛晶晶), Xinqi Li(李新祺), Xiumei Ma(马秀梅), Yuan Yao(姚湲), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(6): 068102.
[13] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[14] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[15] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
No Suggested Reading articles found!