Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 118101    DOI: 10.1088/1674-1056/abb222
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors

Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生)
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
Abstract  

Persistent photoconductivity (PPC) effect and its light-intensity dependence of both enhancement and depletion (E-/D-) mode amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) are systematically investigated. Density of oxygen vacancy (VO) defects of E-mode TFTs is relatively small, in which formation of the photo-induced metastable defects is thermally activated, and the activation energy (Ea) decreases continuously with increasing light-intensity. Density of VO defects of D-mode TFTs is much larger, in which the formation of photo-induced metastable defects is found to be spontaneous instead of thermally activated. Furthermore, for the first time it is found that a threshold dose of light-exposure is required to form fully developed photo-induced metastable defects. Under low light-exposure below the threshold, only a low PPC barrier is formed and the PPC recovery is fast. With increasing the light-exposure to the threshold, the lattice relaxation of metal cations adjacent to the doubly ionized oxygen vacancies (${{\rm{V}}}_{{\rm{O}}}^{2+}$) is fully developed, and the PPC barrier increases to ∼ 0.25 eV, which remains basically unchanged under higher light-exposure. Based on the density of VO defects in the channel and the condition of light illumination, a unified model of formation of photo-induced metastable defects in a-IGZO TFTs is proposed to explain the experimental observations.

Keywords:  amorphous indium-gallium-zinc oxide      thin-film transistors      persistent photoconductivity      light-intensity  
Received:  09 July 2020      Revised:  18 August 2020      Accepted manuscript online:  25 August 2020
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 61974101 and 61971299), the State Key Laboratory of ASIC and System, Fudan University (Grant No. 2019KF007), the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2020021406), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 19KJB510058), and the Suzhou Science and Technology Bureau (Grant No. SYG201933).
Corresponding Authors:  Corresponding author. E-mail: mingxiang_wang@suda.edu.cn Corresponding author. E-mail: dongli_zhang@suda.edu.cn   

Cite this article: 

Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生) A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors 2020 Chin. Phys. B 29 118101

Fig. 1.  

Schematic cross-sectional diagram of an inverted staggered back gate a-IGZO TFT.

Fig. 2.  

Transfer curves of two kinds of a-IGZO TFTs by simulation, and measured in dark state and under different wavelength illumination under VDS = 1 V in logarithmic scale (left, bottom axis) and linear scale (right, up axis).

E-mode a-IGZO TFTs
Parameters Value Description
NC/cm−3 2.0×1019 effective DOS in CBM
NV/cm−3 5×1018 effective DOS in VBM
Eg/eV 3.2 band-gap
Tail states acceptor-like DOS gTA(E) = NTA exp[(EEC)/WTA]
NTA/eV−1⋅cm−3 1.4×1018 density of tail states at E = EC
WTA/eV 0.36 conduction-band-tail slope
Tail states donor-like DOS gTD(E) = NTDexp[(EVE)/WTD]
NTD/eV−1⋅cm−3 4.5×1019 density of tail states at E = EV
WTD/eV 0.1 Valence-band-tail slope
Deep donor-like DOS gGD(E) = NGD exp{−[(EEGD)/WGD]2}
NGD/eV−1⋅cm−3 1×1017 density of donor-like at E = EV
EGD/eV 1 mean energy of donor-like
WGD/eV 0.1 standard deviation of donor-like
D-mode a-IGZO TFTs
Deep donor-like DOS gGD(E) = NGD exp{−[(EEGD)/WGD]2}
NGD/eV−1⋅cm−3 5×1018 density of donor-like at E = EV
EGD/eV 1.3 mean energy of donor-like
WGD/eV 0.1 standard deviation of donor-like
Shallow donor-like DOS gOV(E) = NOV exp{−[(EEOV)/WOV]2}
NOV/eV−1⋅cm−3 1×1018 peak of OV states
EOV/eV 2.9 mean energy of OV states
WOV/eV 0.23 standard deviation of OV states
Table 1.  

Fitting parameters of the two a-IGZO TFTs.

Fig. 3.  

The time dependent photo-induced current ΔI (difference between ID under light and dark) are fitted with stretch-exponential model of an E-mode a-IGZO TFT for different light-intensities respectively in the (a) photo-excitation and (b) recovery stages. Hollow circles are experimental data, and solid lines are fitting curves.

Fig. 4.  

Light-intensity dependence of (a) IS; (b) βex, βre; and (c) τex, τre.

Fig. 5.  

The T dependence of (a) IS; (b) βex, βre; and (c) τex τre under three light-intensities of 0.3 mW/cm2, 1 mW/cm2, and 5 mW/cm2.

Light-intensity Ea_ex/eV Ea_re/eV
0.3 mW/cm2 0.25 0.22
1 mW/cm2 0.13 0.19
5 mW/cm2 0.11 0.15
Table 2.  

Comparison of Ea_ex and Ea_re under three light-intensities.

Fig. 6.  

The time dependent photo-induced current Δ I are fitted with the stretch-exponential model of a D-mode a-IGZO TFT for different light-intensities respectively in the (a) photo-excitation and (b) recovery stages. Hollow circles are experimental data, and solid lines are fitting curves.

Fig. 7.  

Light-intensity dependence of (a) IS; (b) βex, βre; and (c) τex, τre.

Fig. 8.  

Light-exposure dependence of (a) IS; (b) βex, βre; and (c) τex, τre in double logarithmic scales.

Fig. 9.  

The change of ΔI with illumination time in photo-excitation stage at five different temperatures for light-exposures of (a) 6 mJ/cm2, (b) 30 mJ/cm2, (c) 60 mJ/cm2, (d) 150 mJ/cm2, and (e) 3000 mJ/cm2.

Fig. 10.  

The time dependent normalized current ΔI are fitted with stretch-exponential model for different temperatures in the recovery stage at (a) 30 mJ/cm2 and (b) 3000 mJ/cm2; (c) 1/kT dependence of ${\tau }_{{\rm{re}}}^{-1}$; (d) light-exposure dependence of Ea_re extracted from (c).

Samples Photo-excitation PPC recovery
IS βex τex Ea_ex βre τre Ea_re
E-mode TFTs 1 −1 −1
D-mode < DT 1.1 −0.25 −0.28 −0.12 1.7
TFTs > DT 0.16 −0.11 −0.28 slightly ↓ slightly ↓
Table 3.  

Comparison of PPC light dependency of E-mode and D-mode a-IGZO TFTs. The values represent the power exponent n in the power exponent relationship between the relevant parameters and light-intensity or exposure, and the arrows (↑ ↓) represent the increase or decrease with the increase of the light-intensity or exposure.

[1]
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488 DOI: 10.1038/nature03090
[2]
Kamiya T, Nomura K, Hosono H 2009 Display Technology, Journal of 5 273 DOI: 10.1109/JDT.2009.2021582
[3]
Lee M, Kim K T, Lee M, Parkb S K, Kim Y H 2018 Thin Solid Films 660 749 DOI: 10.1016/j.tsf.2018.03.081
[4]
Jeon S, Ahn S E, Song I, Kim C J, Chung U I, Lee E, Yoo I, Nathan A, Lee S, Robertson J, Kim K 2012 Nat. Mater. 11 301 DOI: 10.1038/NMAT3256
[5]
Tanabe T, Notomi M, Mitsugi S, Shinya A, Kuramochi E 2005 Opt. Lett. 30 2575 DOI: 10.1364/OL.30.002575
[6]
Liu M Y, Chen E, Chou S Y 1994 Appl. Phys. Lett. 65 887 DOI: 10.1063/1.112190
[7]
Lu M P, Lu M Y, Chen L J 2014 Adv. Funct. Mater. 24 2967 DOI: 10.1002/adfm.v24.20
[8]
Lany S, Zunger A 2005 Phys. Rev. B 72 035215 DOI: 10.1103/PhysRevB.72.035215
[9]
Janotti A, Van De Walle C G 2005 Appl. Phys. Lett. 87 122102 DOI: 10.1063/1.2053360
[10]
Kim J Y, Yu K M, Jeong S H, Yun E J, Bae B S 2014 Can. J. Phys. 92 611 DOI: 10.1139/cjp-2013-0622
[11]
Moore J C, Thompson C V 2013 Sensors 13 9921 DOI: 10.3390/s130809921
[12]
Worasawat S, Tasaki K, Neo Y, Pecharapa W, Hatanaka Y, Mimura H 2019 Jpn. J. Appl. Phys. 58 055505 DOI: 10.7567/1347-4065/ab0d0f
[13]
Singh S, Shukla R K, Kumar 2005 Indian Journal of Engineering and Materials Sciences 12 461 http://nopr.niscair.res.in/bitstream/123456789/8452/1/IJEMS%2012(5)%20461-466.pdf
[14]
Polyakov A Y, Smirnov N B, Govorkov A V, Redwing J M 1998 MRS Proceedings 512 537 DOI: 10.1557/PROC-512-537
[15]
Sarkar N, Dhar S, Ghosh S 2003 J. Phys.: Condens. Matter 15 7325 DOI: 10.1088/0953-8984/15/43/015
[16]
Lee J M, Cho I T, Lee J H, Kwon H I 2009 Jpn. J. Appl. Phys. 48 100202 DOI: 10.1143/JJAP.48.100202
[17]
Wang M, Liang L, Luo H, Zhang S, Zhang H, Javaid K, Cao H 2016 IEEE Electron Dev. Lett. 37 422 DOI: 10.1109/LED.2016.2525761
[18]
Lu L, Li J, Wong M 2015 IEEE Trans. Electron Dev. 62 3703 DOI: 10.1109/TED.2015.2478839
[19]
Feng Z, Lu L, Wong M, Kwok H S 2016 Sid Symposium Digest of Technical Papers 47 1197 DOI: 10.1002/sdtp.10908
[20]
Lany S, Zunger A 2010 Phys. Rev. B 81 113201 DOI: 10.1103/PhysRevB.81.113201
[21]
Kim Y, Kim S, Kim W, Bae M, Jeong H. K, Kong D, Choi S, Kim D. M, Kim D H 2012 IEEE Trans. Electron Dev. 59 2699 DOI: 10.1109/TED.2012.2208971
[22]
Luo J, Adler A U, Mason T O, Buchholz D B, Chang R P H, Grayson M 2013 J. Appl. Phys. 113 153709 DOI: 10.1063/1.4795845
[23]
Lee D H, Kawamura K I, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H 2010 Thin Solid Films 518 3000 DOI: 10.1016/j.tsf.2009.10.129
[1] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[2] Water-based processed and alkoxide-based processed indium oxide thin-film transistors at different annealing temperatures
Xu-Yang Li(栗旭阳), Zhi-Nong Yu(喻志农), Jin Cheng(程锦), Yong-Hua Chen(陈永华), Jian-She Xue(薛建设), Jian Guo(郭建), Wei Xue(薛唯). Chin. Phys. B, 2018, 27(4): 048504.
[3] Review of photoresponsive properties at SrTiO3-based heterointerfaces
Hong Yan(闫虹), Zhaoting Zhang(张兆亭), Shuanhu Wang(王拴虎), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117804.
[4] Review of flexible and transparent thin-film transistors based on zinc oxide and related materials
Yong-Hui Zhang(张永晖), Zeng-Xia Mei(梅增霞), Hui-Li Liang(梁会力), Xiao-Long Du(杜小龙). Chin. Phys. B, 2017, 26(4): 047307.
[5] Positive gate bias stress-induced hump-effect in elevated-metal metal-oxide thin film transistors
Dong-Yu Qi(齐栋宇), Dong-Li Zhang(张冬利), Ming-Xiang Wang(王明湘). Chin. Phys. B, 2017, 26(12): 128101.
[6] Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy
Chen-Fei Wu(武辰飞), Yun-Feng Chen(陈允峰), Hai Lu(陆海), Xiao-Ming Huang(黄晓明), Fang-Fang Ren(任芳芳), Dun-Jun Chen(陈敦军), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2016, 25(5): 057306.
[7] Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors
Qian Hui-Min, Yu Guang, Lu Hai, Wu Chen-Fei, Tang Lan-Feng, Zhou Dong, Ren Fang-Fang, Zhang Rong, Zheng You-Liao, Huang Xiao-Ming. Chin. Phys. B, 2015, 24(7): 077307.
[8] Positive gate-bias temperature instability of ZnO thin-film transistor
Liu Yu-Rong, Su Jing, Lai Pei-Tao, Yao Ruo-He. Chin. Phys. B, 2014, 23(6): 068501.
[9] Effects of annealing process on characteristics of fully transparent zinc tin oxide thin-film transistor
Chen Yong-Yue, Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen. Chin. Phys. B, 2014, 23(2): 026101.
[10] The effect of annealing temperature and film thickness on the phase of pentacene on the p+-Si substrate
Yuan Guang-Cai, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Huang Jin-Zhao, Huang Jin-Ying, Tian Xue-Yan, Xu Xu-Rong. Chin. Phys. B, 2008, 17(10): 3822-3826.
No Suggested Reading articles found!