Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038201    DOI: 10.1088/1674-1056/27/3/038201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced ionic conductivity in LAGP/LATP composite electrolyte

Shi-Gang Ling(凌仕刚)1,2, Jia-Yue Peng(彭佳悦)1,2, Qi Yang(杨琪)1,2, Ji-Liang Qiu(邱纪亮)1,2, Jia-Ze Lu(卢嘉泽)1,2, Hong Li(李泓)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Nasicon materials (sodium superionic conductors) such as Li1.5Al0.5Ge1.5(PO4)3 (LAGP) and Li1.4Al0.4Ti1.6(PO4)3 (LATP) have been considered as important solid electrolytes due to their high ionic conductivity and chemical stability. Compared to LAGP, LATP has higher bulk conductivity around 10-3 S/cm at room temperature; however, the apparent grain boundary conductivity is almost two orders of magnitude lower than the bulk, while LAGP has similar bulk and grain boundary conductivity around the order of 10-4 S/cm. To make full use of the advantages of the two electrolytes, pure phase Li1.5Al0.5Ge1.5(PO4)3 and Li1.4Al0.4Ti1.6(PO4)3 were synthesized through solid state reaction, a series of composite electrolytes consisting of LAGP and LATP with different weight ratios were designed. XRD and variable temperature AC impedance spectra were carried out to clarify the crystal structure and the ion transport properties of the composite electrolytes. The results indicate that the composite electrolyte with the LATP/LAGP weight ratio of 80:20 achieved the highest bulk conductivity which shall be due to the formation of solid solution phase Li1.42Al0.42Ge0.3Ti1.28(PO4)3, while the highest grain boundary conductivity appeared at the LATP/LAGP weight ratio of 20:80 which may be due to the excellent interfacial phase between Li1+xAlxGeyTi2-x-y(PO4)3/LATP. All the composite electrolytes demonstrated higher total conductivity than the pure LAGP and LATP, which highlights the importance of heterogeneous interface on regulating the ion transport properties.
Keywords:  solid electrolyte      composite      heterogeneous interface      enhanced conductivity  
Received:  10 October 2017      Revised:  29 December 2017      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  66.30.-h (Diffusion in solids)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0100100), the National Natural Science Foundation of China (Grant Nos. 52315206 and 51502334), Fund from Beijing Municipal Science & Technology Commission, China (Grant No. D171100005517001).
Corresponding Authors:  Hong Li     E-mail:  hli@iphy.ac.cn

Cite this article: 

Shi-Gang Ling(凌仕刚), Jia-Yue Peng(彭佳悦), Qi Yang(杨琪), Ji-Liang Qiu(邱纪亮), Jia-Ze Lu(卢嘉泽), Hong Li(李泓) Enhanced ionic conductivity in LAGP/LATP composite electrolyte 2018 Chin. Phys. B 27 038201

[1] Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L, Kalita M, Plewa-Marczewska A, Bitner A, Wieczorek P, Trzeciak T, Kasprzyk M, Łȩżak P, Żukowska Z, Zalewska A and Wieczorek W 2015 Solid State Ionics 276 107
[2] Yao X, Huang B, Yin J, Peng G, Huang Z, Gao C, Liu D and Xu X 2016 Chin. Phys. B 25 018802
[3] Meyer W H 1998 Adv. Mater. 10 439
[4] Gao J, Zhao Y S, Shi S Q and Li H 2016 Chin. Phys. B 25 018211
[5] Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H and Kanno R 2016 Nature Energy 1 16030
[6] Murugan R, Thangadurai V and Weppner W 2007 Angewandte Chemie 46 7778
[7] Yoshiyuki Inaguma, Chen L Q, Itoh M, Nakamura T, Uchida T, Ikuta H and Wakihara M 1993 Solid State Commun. 86 689
[8] Fujimura K, Seko A, Koyama Y, Kuwabara A, Kishida I, Shitara K, Fisher C A J, Moriwake H and Tanaka I 2013 Advanced Energy Materials 3 980
[9] Yamamoto H and Nakamura O 1997 Journal of Power Sources 68 397
[10] Knauth P 2009 Solid State Ionics 180 911
[11] Aono H, Sugimoto E, Sadaoka Y, Imanaka N and Adachi Gin-ya 1990 J. Electrochem. Soc. 137 1023
[12] Xu X, Wen Z, Wu X, Yang X and Gu Z 2007 Journal of the American Ceramic Society 90 2802
[13] Wang S, Ben L, Li H and Chen L 2014 Solid State Ionics 268 110
[14] Schell K G, Bucharsky E C, Lemke F and Hoffmann M J 2017 Ionics 23 821
[15] Zhao E, Ma F, Jin Y and Kanamura K 2016 J. Alloy. Compd. 680 646
[16] Ma F, Zhao E, Zhu S, Yan W, Sun D, Jin Y and Nan C 2016 Solid State Ionics 295 7
[17] Liu X G, Fu J and Zhang C H 2016 Nanoscale Research Letters 11 551
[18] Yan B, Zhu Y, Pan F, Liu J and Lu L 2015 Solid State Ionics 278 65
[19] Kim K M, Shin D O and Lee Y G 2015 Electrochimica Acta 176 1364
[20] Morimoto H, Hirukawa M, Matsumoto A, Kurahayashi T, Ito N and Tobishima S I 2014 Electrochemistry 82 870
[21] Kotobuki M, Kobayashi B, Koishi M, Mizushima T and Kakuta N 2014 Materials Technology 29 A93
[22] Kothari D H and Kanchan D K 2016 Physica B 494 20
[23] Kothari D H and Kanchan D K 2016 Physica B 501 90
[24] Arbi K, Bucheli W, Jimenez R and Sanz J 2015 Journal of the European Ceramic Society 35 1477
[25] Jadhav H S, Kalubarme R S, Jang S Y, Jung K N, Shin K H and Park C J 2014 Dalton Transactions 43 11723
[26] Chung H and Kang B 2014 Solid State Ionics 263 125
[27] Jadhav H S, Cho M S, Kalubarme R S, Lee J S, Jung K N, Shin K H and Park C J 2013 Journal of Power Sources 241 502
[28] Thokchom J S and Kumar B 2008 Journal of Power Sources 185 480
[29] Leo C J, Rao G V S and Chowdari B V R 2003 Solid State Ionics 159 357
[30] Yu S C, Mertens A, Gao X, Gunduz D C, Schierholz R, Benning S, Hausen F, Mertens J, Kungl H, Tempel H and Eichel R A 2016 Functional Materials Letters 9 1650066
[31] Zhao E, Ma F, Guo Y and Jin Y 2016 Rsc Advances 6 92579
[32] Onishi H, Takai S, Yabutsuka T and Yao T 2016 Electrochemistry 84 967
[33] Irvine J T S, Sinclair D C and West A R 1990 Advanced Materials 2 132
[1] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[2] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[3] Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite
Zein K. Heiba, Mohamed Bakr Mohamed, Ali A. Alkathiri, Sameh I. Ahmed, A A Alhazime. Chin. Phys. B, 2022, 31(7): 077102.
[4] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[5] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[6] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[7] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[8] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[9] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[10] Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites
Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松). Chin. Phys. B, 2022, 31(2): 027503.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[13] Characterization of inner layer thickness change of a composite circular tube using nonlinear circumferential guided wave:A feasibility study
Ming-Liang Li(李明亮), Guang-Jian Gao(高广健), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2021, 30(8): 084301.
[14] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[15] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
No Suggested Reading articles found!