Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077306    DOI: 10.1088/1674-1056/25/7/077306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropic transport properties in the phase-separated La0.67Ca0.33MnO3/NdGaO3 (001) films

Hong-Rui Zhang(张洪瑞)1, Yuan-Bo Liu(刘渊博)1, Shuan-Hu Wang(王拴虎)2, De-Shun Hong(洪德顺)1, Wen-Bin Wu(吴文彬)3, Ji-Rong Sun(孙继荣)1
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Shanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi’an 710072, China;
3 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230026, China
Abstract  

The anisotropic transport property was investigated in a phase separation La0.67Ca0.33MnO3 (LCMO) film grown on (001)-oriented NdGaO3 (NGO) substrate. It was found that the resistivity along the b-axis is much higher than that along the a-axis. Two resistivity peaks were observed in the temperature dependent measurement along the b-axis, one located at 91 K and the other centered at 165 K. Moreover, we also studied the response of the resistivities along the two axes to various electric currents, magnetic fields, and light illuminations. The resistivities along the two axes are sensitive to the magnetic field. However, the electric current and light illumination can influence the resistivity along the b-axis obviously, but have little effect on the resistivity along the a-axis. Based on these results, we believe that an anisotropic-strain-controlled MnO6 octahedra shear-mode deformation may provide a mechanism of conduction filaments paths along the a-axis, which leads to the anisotropic transport property.

Keywords:  electronic transport      magnetic field      electric currents      light illuminations  
Received:  19 February 2016      Revised:  13 April 2016      Published:  05 July 2016
PACS:  73.43.Qt (Magnetoresistance)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921801, 2012CB921403, and 2013CB921701) and the National Natural Science Foundation of China (Grant Nos. 11074285, 51372064, and 11134007).

Corresponding Authors:  Ji-Rong Sun     E-mail:  jrsun@iphy.ac.cn

Cite this article: 

Hong-Rui Zhang(张洪瑞), Yuan-Bo Liu(刘渊博), Shuan-Hu Wang(王拴虎), De-Shun Hong(洪德顺), Wen-Bin Wu(吴文彬), Ji-Rong Sun(孙继荣) Anisotropic transport properties in the phase-separated La0.67Ca0.33MnO3/NdGaO3 (001) films 2016 Chin. Phys. B 25 077306

[1] Shenoy V B, Sarma D D and Rao C N R 2006 Chem. Phys. Chem 7 2053
[2] Cox S, Singleton J, McDonald R D, Migliori A and Littlewood P B 2008 Nat. Mater. 7 25
[3] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[4] Zhao Y G, Wang Y H, Zhang G M, Zhang B, Zhang X P, Yang C X, Lang P L, Zhu M H and Guan P C 2004 Appl. Phys. Lett. 86 122502
[5] Hu F X and Gao J 2004 Phys. Rev. B 69 212413
[6] Asamitsu A, Tomioka Y, Kuwahara H and Tokura Y 1997 Nature 388 50
[7] Yoshizawa H, Kawano H, Tomioka Y and Tokura Y 1995 Phys. Rev. B 52 R13145
[8] Uehara M, Mori S, Chen C H and Cheong S W 1999 Nature 399 560
[9] Sheng Z G, Sun Y P, Dai J M, Zhu X B and Song W H 2006 Appl. Phys. Lett. 89 082503
[10] Fiebig M, Miyano K, Tomioka Y and Tokura Y 1998 Science 280 1925
[11] Hwang H Y, Palstra T T M, Cheong S W and Batlogg B 1995 Phys. Rev. B 52 15046
[12] Zayak A T, Huang X, Neaton J B and Rabe K M 2008 Phys. Rev. B 77 214410
[13] Ward T Z, Budai J D, Gai Z, Tischler J Z, Yin L and Shen J 2009 Nat. Phys. 5 885
[14] Huang Z, Wang L F, Chen P F, Gao G Y, Tan X L, Zhi B W, Xuan X F and Wu W B 2012 Phys. Rev. B 86 014410
[15] Wang L F, Tan X L, Chen P F, Zhi B W, Sun Z G, Huang Z, Gao G Y and Wu W B 2013 Appl. Phys. Lett. 103 072407
[16] Huang Z, Wang L, Tan X, Chen P, Gao G and Wu W 2010 J. Appl. Phys. 108 083912
[17] Amaral V S, Lourenco A A C S, Araújo J P, Tavares P B, Alves E, Sousa J B, Vieirad J M, Silva M F da and Soares J C 2000 J. Magn. Magn. Mater. 211 1
[18] Chen X G, Yang J B, Yang Y B, Wang C S, Liu S Q, Zhang Y, Han J Z and Yang Y C 2014 J. Appl. Phys. 115 043904
[19] Hardy V, Wahl A and Martin C 2001 Phys. Rev. B 64 064402
[20] Prokhorov V G, Komashko V A, Svetchnikov V L, Lee Y P and Park J S 2004 Phys. Rev. B 69 014403
[21] Liu Y B, Sun J R and Shen B G 2013 J. Appl. Phys. 114 193704
[22] Wang L F, Huang Z, Tan X L, Chen P F, Zhi B W, Li G M and Wu W B 2010 Appl. Phys. Lett. 97 242507
[23] Garbarino G, Acha C, Levy P, Koo T Y and Cheong S W 2006 Phys. Rev. B 74 100401
[1] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[2] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[3] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[4] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[5] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[6] Electrical properties of Ca3-xSmxCo4O9+δ ceramics preparedunder magnetic field
Xiu-Rong Qu(曲秀荣), Yan-Yan Xu(徐岩岩), Shu-Chen Lü(吕树臣), Jian-Min Hu(胡建民). Chin. Phys. B, 2020, 29(4): 046103.
[7] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[8] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[9] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[10] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[11] Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser
F Bazouband, B Maraghechi. Chin. Phys. B, 2019, 28(6): 064101.
[12] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[13] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[14] Magnetochemistry and chemical synthesis
Lin Hu(胡林), Guoliang Xia(夏国良), Qianwang Chen(陈乾旺). Chin. Phys. B, 2019, 28(3): 037102.
[15] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
No Suggested Reading articles found!