Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014502    DOI: 10.1088/1674-1056/25/1/014502
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Two kinds of generalized gradient representationsfor holonomic mechanical systems

Feng-Xiang Mei(梅凤翔)1 and Hui-Bin Wu(吴惠彬)2
1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. School of Mathematics, Beijing Institute of Technology, Beijing 100081, China
Abstract  

Two kinds of generalized gradient systems are proposed and the characteristics of the two systems are studied. The conditions under which a holonomic mechanical system can be considered as one of the two generalized gradient systems are obtained. The characteristics of the generalized gradient systems can be used to study the stability of the holonomic system. Some examples are given to illustrate the application of the results.

Keywords:  holonomic mechanical system      generalized gradient system      Lyapunov function      stability  
Received:  19 July 2015      Revised:  02 September 2015      Published:  05 January 2016
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11272050).

Corresponding Authors:  Hui-Bin Wu     E-mail:  huibinwu@bit.edu.cn

Cite this article: 

Feng-Xiang Mei(梅凤翔) and Hui-Bin Wu(吴惠彬) Two kinds of generalized gradient representationsfor holonomic mechanical systems 2016 Chin. Phys. B 25 014502

[1] Hirsch M W and Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (New York: Springer-Verlag)
[2] McLachlan R I, Quispel G R W and Robidoux N 1999 Phil. Tran. R. Soc. Lond A 357 1021
[3] Quispel G R W and Capel H W 1996 Phys. Lett. A 218 223
[4] Quispel G R W and Turner G S 1996 J. Phys. A: Math. Gen. 29 L341
[5] Hong J L, Zhai S X and Zhang J J 2011 SIAM J. Numer. Anal. 49 2017
[6] Mei F X 2012 Mechanics in Engineering 34 89 (in Chinese)
[7] Mei F X and Wu H B 2012 J. Dynamics Control 10 289 (in Chinese)
[8] Mei F X, Cui J C and Wu H B 2012 Trans. Beijing Inst. Tech. 32 1298 (in Chinese)
[9] Lou Z M and Mei F X 2012 Acta Phys. Sin. 61 024502 (in Chinese)
[10] Mei F X 2013 Mechanics in Engineering 35 79 (in Chinese)
[11] Chen X W, Zhao G L and Mei F X 2013 Nonlinear Dyn. 73 579
[12] Mei F X and Wu H B 2013 Sci. Sin. Phys. Mech. Astron. 43 538 (in Chinese)
[13] Mei F X 2013 Analytical Mechanics II (Beijing: Beijing Institute of Technology Press) (in Chinese)
[14] Mei F X and Wu H B 2013 Acta Phys. Sin. 62 214501 (in Chinese)
[15] Ge W K, Xue Y and Lou Z M 2014 Acta Phys. Sin. 63 110202 (in Chinese)
[16] Mei F X and Wu H B 2015 Chin. Phys. B 24 054501
[17] Mei F X and Wu H B 2015 Acta Phys. Sin. 64 184501 (in Chinese)
[18] Mei F X and Wu H B 2015 Chin. Phys. B 24 104502
[1] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[2] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安)†, Tiao-Fang Liu(刘调芳)\cclink, Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[5] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[6] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[7] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[8] Tilt adjustment for a portable absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(7): 073701.
[9] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[10] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[11] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[12] A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(6): 060501.
[13] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
[14] Multistability and coexisting transient chaos in a simple memcapacitive system
Fu-Ping Wang(王富平), Fa-Qiang Wang(王发强). Chin. Phys. B, 2020, 29(5): 058502.
[15] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
No Suggested Reading articles found!