Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 065201    DOI: 10.1088/1674-1056/23/6/065201

Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon

Xu Dong-Shenga, Zou Shuaia b, Xin Yua, Su Xiao-Donga, Wang Xu-Shengb
a Provincial Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
b Canadian Solar Inc. China, Suzhou 215000, China
Abstract  Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper, capacitively coupled plasma (CCP) driven by a dual frequency (DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2 gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency (RF) input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density ne must be larger than 6.3×109 cm-3 and the spectral intensity ratio of the F atom to that of the O atom ([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9×109 cm-3.
Keywords:  dual frequency capacitively coupled plasma      plasma texturing      multi-crystalline silicon      electron density  
Received:  12 November 2013      Revised:  09 December 2013      Published:  15 June 2014
PACS:  52.27.Cm (Multicomponent and negative-ion plasmas)  
  52.70.Ds (Electric and magnetic measurements)  
  52.70.Nc (Particle measurements)  
Fund: Project supported by the Prospective Project of Industry-University-Research Institution of Jiangsu Province, China (Grant No. BY2010125) and the National Natural Science Foundation of China (Grant No. 11175127).
Corresponding Authors:  Xin Yu     E-mail:

Cite this article: 

Xu Dong-Sheng, Zou Shuai, Xin Yu, Su Xiao-Dong, Wang Xu-Sheng Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon 2014 Chin. Phys. B 23 065201

[1] Inomata Y, Fukui K and Shirasawa K 1997 Sol. Energy Mater. Sol. Cells 48 237
[2] Fukui K, Okada K, Inomata Y, Takahashi H, Fujii S, Fukawa Y and Shirasawa K 1997 Sol. Energy Mater. Sol. Cells 48 219
[3] Shirasawa K, Fukui K, Okada K, Inomata Y, Takahashi H and Fujii S 1997 14th EC Photovoltaic Solar Energy Conference, Barcelona, Spain, pp. 384-387
[4] Ruby D S, Zaidi S H, Narayanan S, Damiani B M and Rohatgi A 2002 Sol. Energy Mater. Sol. Cells 74 133
[5] Yoo J, Kim K, Thamilselvan M, Lakshminarayn N, Kim Y K, Lee J, Yoo K J and Yi J 2008 J. Phys. D: Appl. Phys. 41 125205
[6] Yoo J 2010 Solar Energy 84 730
[7] Yoo J, Yu G and Yi J 2011 Sol. Energy Mater. Sol. Cells 95 2
[8] Liang L, Nakamura K and Sugai H 2011 Appl. Phys. Express 4 066101
[9] Piejak R B, Al- Kuzee J and Braithwaite N S 2005 Plasma Sources Sci. Technol. 14 734
[10] Karkari S K, Gaman C, Ellingboe A R, Swindells I and Bradley J W 2007 Meas. Sci. Technol. 18 2649
[11] Stenzel R L 1976 Rev. Sci. Instrum. 47 603
[12] Piejak R B, Godyak V A, Garner R, Alexandrovich B M and Sternberg N 2004 J. Appl. Phys. 95 3785
[13] Hebner G A and Abraham I C 2001 J. Appl. Phys. 90 4929
[14] Hebner G A and Abraham I C 2002 J. Appl. Phys. 91 9539
[15] Curley G A, Maric D, Booth J P, Corr C S, Chabert P and Guillon J 2007 Plasma Sources Sci. Technol. 16 S87
[16] Coburn J W and Chen M 1980 J. Appl. Phys. 51 3134
[17] Dreyfus R W, Jasinski J M, Walkup R E and Selwyn G S 1985 Pure Appl. Chem. 57 1256
[18] Donnelly V M, Flamm D L, Dautremont-Smith W C and Werder D J 1984 J. Appl. Phys. 55 242
[19] Walkup R E, Saenger K L and Selwyn G S 1986 J. Chem. Phys. 84 2688
[20] Booth J P, Joubert O, Pelletier J and Sadeghi N 1991 J. Appl. Phys. 69 618
[21] Booth J P, Joubert O, Pelletier J and Sadeghi N 1991 J. Appl. Phys. 69 618
[22] Plank N O V, Blauw M A, Drift E W J M and Cheung R 2003 J. Phys. D: Appl. Phys. 36 482
[23] Huang X J, Xin Y, Yuan Q H and Ning Z Y 2008 Phys. Plasmas 15 073501
[24] Sugai H 2005 Plasma Electronic Engineering (Beijing: Science Press) p. 61 (in Chinese)
[25] Zou S, Tang Z H, Ji L L, Su X D and Xin Y 2012 Acta Phys. Sin. 61 075204 (in Chinese)
[26] D'Agostino R and Flamm D L 1981 J. Appl. Phys. 52 162
[27] Brown M S, Scofield J D and Ganguly B N 2003 J. Appl. Phys. 94 822
[28] Anderson H M, Merson J A and Light R W 1986 IEEE Trans. Plasma Sci. 2 156
[29] Benhenni M and Yousfi M 2012 Plasma Sources Sci. Technol. 21 015014
[30] Tuszewski M and White R R 2002 Plasma Sources Sci. Technol. 11 338
[31] Takizawa K, Kono A and Sasaki K 2007 Appl. Phys. Lett. 90 011503
[32] Flamm D L, Donnelly V M and Mucha J A 1981 J. Appl. Phys. 52 3633
[1] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[2] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[3] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[4] Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer
Jie Huang(黄杰), Lin Yang(杨林), Hongchao Zhang(张宏超), Lei Chen(陈磊), Xianying Wu(吴先映). Chin. Phys. B, 2019, 28(5): 055202.
[5] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[6] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[7] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[8] Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations
Yuan Ye, Xu Run, Xu Hai-Tao, Hong Feng, Xu Fei, Wang Lin-Jun. Chin. Phys. B, 2015, 24(11): 116302.
[9] First-principles study of orbital ordering in cubic fluoride KCrF3
Ming Xing, Xiong Liang-Bin, Xu Huo-Xi, Du Fei, Wang Chun-Zhong, Chen Gang. Chin. Phys. B, 2014, 23(3): 037401.
[10] Charge density at the nucleus and radial behavior of ground state for lithium-like ions with Z = 21 to 30
Yu Wei-Wei, Wang Zhi-Wen, Chen Chao, Cai Juan, Zhang Nan. Chin. Phys. B, 2012, 21(7): 073102.
[11] Methyl orbital signatures in 2-amino-1-propanol
Wang Ke-Dong, Duan Kun-Jie, Liu Yu-Fang. Chin. Phys. B, 2012, 21(7): 073103.
[12] Erratum to "Quantum compact model for thin-body double-gate Schottky barrier MOSFETs"
Luan Su-Zhen, Liu Hong-Xia. Chin. Phys. B, 2011, 20(2): 027305.
[13] Quantum compact model for thin-body double-gate Schottky barrier MOSFETs
Luan Su-Zhen, Liu Hong-Xia. Chin. Phys. B, 2008, 17(8): 3077-3082.
[14] A new method of asymmetric Abel inversion for magnetic equilibrium configuration state in tokamaks
Tian Chong-Li, Zhou Yan, Shi Zhong-Bing, Li Ying-Liang. Chin. Phys. B, 2007, 16(1): 207-209.
[15] Temperature dependence of Hall electron density of GaN-based heterostructures
Zhang Jin-Feng, Zhang Jin-Cheng, Hao Yue. Chin. Phys. B, 2004, 13(8): 1334-1338.
No Suggested Reading articles found!