Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 065202    DOI: 10.1088/1674-1056/23/6/065202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A tunable dual-narrowband band-pass filter using plasma quantum well structure

Dai Yi (戴燚)a, Liu Shao-Bin (刘少斌)a, Wang Shen-Yun (王身云)b, Kong Xiang-Kun (孔祥鲲)a b, Chen Chen (陈忱)a
a College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;
b College of Electronic and Information Egineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  A tunable dual-narrowband pass-band filter is designed. A one-dimensional photonic crystal (1D PC) is comprised of alternate dielectric layer and vacuum layer. Two quantum wells (QWs) as defects can be constructed by sandwiching two plasma slabs symmetrically in the 1D PC, and a dual-narrowband pass-band filter is formed. The conventional finite-difference time-domain (FDTD) method and piecewise linear current density recursive convolution (PLCDRC)-FDTD method are applied to the dielectric and plasma, respectively. The simulation results illustrate that the dual-narrowband frequencies can be tuned by changing the plasma frequency. The pass band interval and the half-power bandwidths (-3-dB band widths) are related to the space interval between two QWs.
Keywords:  quantum well      dual-narrowband pass-band filter      plasma  
Received:  01 October 2013      Revised:  20 January 2014      Accepted manuscript online: 
PACS:  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
Fund: Project supported by the Aviation Science Foundation (Key Project 20121852030), Jiangsu Provincial Natural Science Foundation, China (Grant No. BK2011727), and the Open Research Program in Jiangsu Provincial Key Laboratory of Meteorological Observation and Information Processing, China (Grant No. KDXS1207).
Corresponding Authors:  Dai Yi, Liu Shao-Bin     E-mail:  daiyi@nuaa.edu.cn;lsb@nuaa.edu.cn

Cite this article: 

Dai Yi (戴燚), Liu Shao-Bin (刘少斌), Wang Shen-Yun (王身云), Kong Xiang-Kun (孔祥鲲), Chen Chen (陈忱) A tunable dual-narrowband band-pass filter using plasma quantum well structure 2014 Chin. Phys. B 23 065202

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Kim S and Gopalan V 2001 Appl. Phys. Lett. 78 3015
[4] Park W and Lee J 2004 Appl. Phys. Lett. 85 360
[5] Thubthimthong B and Chollet F 2008 Microelectron. Eng. 85 759
[6] Joda S and Sasaki A 1997 Jpn. J. Appl. Phys. 36 1907
[7] Wijnhoven J E G and Vos W L 1998 Science 281 802
[8] Velev A, Jede T A, Lobo R F and Lenhoff A M 1997 Nature 389 447
[9] Figontin A, Godin Y A and Vitebsky I 1998 Phys. Rev. B 57 2841
[10] Chen Y B, Zhang C and Zhu Y Y 2002 Mater. Lett. 55 12
[11] Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 8992
[12] Liu S B, Mo J J and Yuan N C 2005 Acta Phys. Sin. 54 2804 (in Chinese)
[13] Mudachathia R, Chennai and Nair P 2012 Journal of Microelectromechanical Systems 21 190
[14] Zhao Y N, Li K Z, Wang X H and Jin C J 2011 Chin. Phys. B 20 074210
[15] Liu N H 1997 Phys. Rev. B 55 4097
[16] Fang Y T, Zhou J and Pun E Y B 2007 Appl. Phys. B 86 587
[17] Chen Y H, Dong J W and Wang H Z 2006 Appl. Phys. Lett. 89 141101
[18] Liu S B, Yuan N C and Mo J J 2003 IEEE Microwave and Wireless Components Letters 13 187
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[3] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[4] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[8] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[11] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[12] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[13] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[14] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[15] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
No Suggested Reading articles found!