Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064206    DOI: 10.1088/1674-1056/23/6/064206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of the wavelength-tunable XUV pulse using the two-color and three-color infrared pulses

Feng Li-Qianga c, Liu Hangb, Liu Xing-Jiangc
a College of Science, Liaoning University of Technology, Jinzhou 121000, China;
b School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121000, China;
c School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121000, China
Abstract  We present an efficient method to generate an ultrashort wavelength-tunable XUV pulse by using the harmonic selective enhancement scheme. The results show that by properly controlling the delay times of a two-color field or a three-color field, selective enhancement of the harmonics with photon energies between 80 eV and 315 eV can be obtained. Further, a wavelength-tunable and bandwidth-controllable XUV radiation can be obtained by Fourier transformation of these enhanced harmonics.
Keywords:  high-order harmonic generation      XUV pulse      harmonic selective enhancement  
Received:  15 September 2013      Revised:  07 November 2013      Published:  15 June 2014
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  32.80.Fb (Photoionization of atoms and ions)  
Fund: Project supported by the Scientific Research Fund of Liaoning Provincial Education Department, China (Grant No. L2012223) and the Scientific Research Fund of Liaoning University of Technology, China (Grant Nos. X201319 and X201312).
Corresponding Authors:  Feng Li-Qiang, Liu Xing-Jiang     E-mail:  lqfeng_lngy@126.com;arthur45415@163.com

Cite this article: 

Feng Li-Qiang, Liu Hang, Liu Xing-Jiang Generation of the wavelength-tunable XUV pulse using the two-color and three-color infrared pulses 2014 Chin. Phys. B 23 064206

[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Osborne I and Yeston J 2007 Science 317 765
[3] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[4] Agostini P and DiMauro L 2004 Rep. Prog. Phys. 67 813
[5] Zhou Z Y and Yan J M 2008 Chin. Phys. B 17 4523
[6] Yun C X, Teng H, Zhang W, Zhan M J, Han H N, Zhong X, Wei Z Y, Wang B B and Hou X 2010 Chin. Phys. B 19 124210
[7] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
[8] Feng L Q and Chu T S 2012 Chin. Phys. B 21 124204
[9] Zeng Z, Cheng Y, Song X, Li R and Xu Z 2007 Phys. Rev. Lett. 98 203901
[10] Zhang G T, Wu J, Xia C L and Liu X S 2009 Phys. Rev. A 80 055404
[11] Feng L Q and Chu T S 2012 J. Chem. Phys. 136 054102
[12] Ishikawa K 2003 Phys. Rev. Lett. 91 043002
[13] Lan P F, Lu P X, Li Q G, Li F, Hong W Y and Zhang Q B 2009 Phys. Rev. A 79 043413
[14] Zhai Z and Liu X S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 125602
[15] Zhang C J, Yao J P, Ni J L, Li G H, Cheng Y and Xu Z Z 2012 Opt. Express 20 16544
[16] Dasilva L B, Baraee T W, Cauble R, Celliers P, Ciarlo D, Libby S, London R A, Matthews D, Mrowka S, Moreno J C, Ress D, Trebes J E, Wan A S and Weber F 1995 Phys. Rev. Lett. 74 3991
[17] Warntjes J B M, Gurtler A, Osterwalder A, Rosca-Pruna F, Vrakking M J J and Noordam L D 2001 Opt. Lett. 16 1463
[18] Tosa V, Takahashi E, Nabekawa Y and Midorikawa K 2003 Phys. Rev. A 67 063817
[19] Zhang X S, Lytle A L, Popmintchev T, Zhou X B, Kapteyn H C, Mumane M M and Cohen O 2007 Nat. Phys. 3 270
[20] Rae S C, Chen X and Burnett K 1994 Phys. Rev. A 50 1946
[21] Miao X Y and Du H N 2013 Phys. Rev. A 87 053403
[22] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
[23] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[24] Zhang P Y, Lu R F, Chu T S and Han K L 2010 J. Chem. Phys. 133 174316
[25] Burnett K, Reed V C, Cooper J and Knight P L 1992 Phys. Rev. A 45 3347
[26] Feng L Q and Chu T S 2011 Phys. Rev. A 84 053853
[27] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[28] Mairesse Y, Bohan A D, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P and Saliéres P 2003 Science 302 1540
[29] Zeng Z N, Cheng Y, Fu Y X, Song X H, Li R X and Xu Z Z 2008 Phys. Rev. A 77 023416
[30] Yao J P, Cheng Y, Chen J, Zhang H S, Xu H, Xiong H, Zeng B, Chu W, Ni J L, Liu X and Xu Z Z 2011 Phys. Rev. A 83 033835
[1] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
[2] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
[3] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
[4] Controlling paths of high-order harmonic generation by orthogonal two-color fields
Ze-Hui Ma(马泽慧), Cai-Ping Zhang(张彩萍), Jun-Lin Ma(马俊琳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(4): 043201.
[5] Phase jump in resonance harmonic emission driven by strong laser fields
Yuan-Yuan Zhao(赵媛媛), Di Zhao(赵迪), Chen-Wei Jiang(蒋臣威), Ai-Ping Fang(方爱平), Shao-Yan Gao(高韶燕), Fu-Li Li(李福利). Chin. Phys. B, 2020, 29(2): 023201.
[6] Numerical simulations of strong-field processes in momentum space
Yan Xu(徐彦), Xue-Bin Bian(卞学滨). Chin. Phys. B, 2020, 29(2): 023202.
[7] An improved method for the investigation of high-order harmonic generation from graphene
Zhong Guan(管仲), Lu Liu(刘璐), Guo-Li Wang(王国利)†, Song-Feng Zhao(赵松峰), Zhi-Hong Jiao(焦志宏), and Xiao-Xin Zhou(周效信)‡. Chin. Phys. B, 2020, 29(10): 104206.
[8] Role of quantum paths in generation of attosecond pulses
M R Sami and A Shahbaz†. Chin. Phys. B, 2020, 29(10): 104207.
[9] Quantum interference of a time-dependent wave packet of atom irradiated by an ultra-short laser pulse
Wen-Min Yan(闫文敏), Ji-Gen Chen(陈基根), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(1): 013202.
[10] Bohmian trajectory perspective on strong field atomic processes
Xuan-Yang Lai(赖炫扬), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 013205.
[11] Resolving multi-orbital effects on high harmonic generation from aligned N2 molecules in linearly and elliptically polarized intense laser fields
Hong-Jing Liang(梁红静), Xin Fan(范鑫), Shuang Feng(冯爽), Li-Yu Shan(单立宇), Qing-Hua Gao(高庆华), Bo Yan(闫博), Ri Ma(马日), Hai-Feng Xu(徐海峰), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(9): 094211.
[12] Quantum interference of multi-orbital effects in high-harmonic spectra from aligned carbon dioxide and nitrous oxide
Hong-Jing Liang(梁红静), Xin Fan(范鑫), Shuang Feng(冯爽), Li-Yu Shan(单立宇), Qing-Hua Gao(高庆华), Bo Yan(闫博), Ri Ma(马日), Hai-Feng Xu(徐海峰). Chin. Phys. B, 2019, 28(9): 094207.
[13] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
[14] Effect of laser intensity on quantum trajectories in the macroscopic high-order harmonic generation
Yun Pan(潘云), Fuming Guo(郭福明), Yujun Yang(杨玉军), Dajun Ding(丁大军). Chin. Phys. B, 2019, 28(11): 113201.
[15] Role of Bloch oscillation in high-order harmonic generation from periodic structure
Lu Liu(刘璐), Jing Zhao(赵晶), Jian-Min Yuan(袁建民), Zeng-Xiu Zhao(赵增秀). Chin. Phys. B, 2019, 28(11): 114205.
No Suggested Reading articles found!