Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 020509    DOI: 10.1088/1674-1056/20/2/020509
GENERAL Prev   Next  

Robust fault-sensitive synchronization of a class of nonlinear systems

Xu Shi-Yun(徐式蕴)a), Yang Ying(杨莹)b), Liu Xian(刘仙)c), Tang Yong(汤涌)a), and Sun Hua-Dong(孙华东)a)
a China Electric Power Research Institute, Beijing 100192, China; b State Key Lab for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China; c Department of Automation, Yanshan University, Qinhuangdao 066004, China
Abstract  Aiming at enhancing the quality as well as the reliability of synchronization, this paper is concerned with the fault detection issue within the synchronization process for a class of nonlinear systems in the existence of external disturbances. To handle such problems, the concept of robust fault-sensitive (RFS) synchronization is proposed, and a method of determining such a kind of synchronization is developed. Under the framework of RFS synchronization, the master and the slave systems are robustly synchronized, and at the same time, sensitive to possible faults based on a mixed H-/H performance. The design of desired output feedback controller is realized by solving a linear matrix inequality, and the fault sensitivity H- index can be optimized via a convex optimization algorithm. A master-slave configuration composed of identical Chua's circuits is adopted as a numerical example to demonstrate the effectiveness and applicability of the analytical results.
Keywords:  nonlinear system      synchronization      disturbance rejection      fault detection  
Received:  17 January 2010      Revised:  02 November 2010      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60874011), the National Science and Technology Infrastructure Program (Grant No. 2008BAA13B07), and the China Postdoctoral Science Foundation (Grant No. 20100480242).

Cite this article: 

Xu Shi-Yun(徐式蕴), Yang Ying(杨莹), Liu Xian(刘仙), Tang Yong(汤涌), and Sun Hua-Dong(孙华东) Robust fault-sensitive synchronization of a class of nonlinear systems 2011 Chin. Phys. B 20 020509

[1] Pecora L M and Carroll T L 1991 Phys. Rev. Lett. 64 821
[2] Wu C W 2002 Synchronization in Coupled Chaotic Circuits and Systems (Singapore: World Scientific)
[3] Chen G and Dong X 1999 From Chaos to Order: Methodologies, Perspectives and Applications (Weinheim: Wiley-VCH)
[4] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Unified Approach to Nonlinear Science (Cambridge: Cambridge University Press)
[5] Strogatz S 2003 Sync: The Emerging Science of Spontaneous Order (New York: Hyperion)
[6] Wang Q Y, Lu Q S and Wang H X 2005 Chin. Phys. 14 2189
[7] Solak E 2004 Phys. Lett. A 325 276
[8] Liao T L and Huang N S 1999 IEEE Trans. Circuits Syst. 46 1144
[9] Chen C, Feng G and Guan X 2004 Phys. Lett. A 321 344
[10] Zhang X Y, Guan X P and Li H G 2005 Chin. Phys. 14 279
[11] Cui B T and Gao M 2009 Chin. Phys. B 18 76
[12] Vidyasagar M 1993 Nonlinear Systems Analysis (NJ: Prentice-Hall)
[13] Liu X, Wang J Z and Huang L 2007 Physica A 386 543
[14] Liu X, Wang J Z and Huang L 2007 Physica A 383 733
[15] Xu S Y and Yang Y 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3230
[16] Chua L O 1994 J. Circuits Syst. Comput. 4 117
[17] Tsuneda A 2005 Int. J. Bifur. Chaos 15 1
[18] Ruoff P, Vinsjevik M, Monnerjahnsjevik C and Rensing L 2001 J. Theor. Biol. 209 29
[19] Gardner T S, Cantor C R and Collins J J 2000 Nature 403 339
[20] Gazi V and Passino K M 2003 IEEE Trans. Autom. Control 48 692
[21] Curran P F and Chua L O 1997 Int. J. Bifur. Chaos 7 1375
[22] S'anchez E, Mat'hias M A and P'erez-Mu nuzuri V 1997 Phys. Rev. E 56 4068
[23] Huang H and Feng G 2008 Chaos 18 033113
[24] Suykens J A K, Curran P F, Vandewalle J and Chua L O 1997 IEEE Trans. Circutis Syst. -I 44 891
[25] Lee S M, Ji D H, Park J H and Won S C 2008 Phys. Lett. A 372 4905
[26] Chen J and Patton R J 1999 Robust Model-Based Fault Diagnosis for Dynamic Systems (Boston: Kluwer Academic Publishers)
[27] Wang J L, Yang G H and Liu J 2007 Automatica 43 1656
[28] Ding S X 2008 Model-Based Fault Diagnosis Techniques, Design Schemes, Algorithms, and Tools (Berlin, Heidelberg: Springer-Verlag)
[29] Ding S X, Jeinsh T, Frank P M and Ding E L 2000 Int. J. Adapt. Control Signal Process. 14 725
[30] Hou M and Patton R J 1996 Proceedings of UKACC International Conference on Control 1996 p. 305
[31] Boyd S, ElGhaoui L, Feron E and Balakrishnam V 1994 Linear Matrix Inequalities in Systems and Control (Philadelphia: SIAM)
[32] Nijmeijer H and Mareels I 1997 IEEE Trans. Circuits Syst. -I 44 882
[33] Mandan R N 1993 Chua's Circuit: A Paradigm for Chaos (Singapore: World Scientific)
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[9] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[10] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[11] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[12] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[13] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[14] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[15] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
No Suggested Reading articles found!