Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010301    DOI: 10.1088/1674-1056/25/1/010301
GENERAL Prev   Next  

Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method

Resita Arum Sari, A Suparmi, C Cari
Physics Department, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta 57126, Indonesia
Abstract  The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.
Keywords:  Dirac equation      Eckart potential      trigonometric Manning Rosen potential      spin symmetric  
Received:  28 May 2015      Revised:  24 July 2015      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Db (Functional analytical methods)  

Cite this article: 

Resita Arum Sari, A Suparmi, C Cari Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method 2016 Chin. Phys. B 25 010301

[1] Greiner W 2000 Relativistic Quantum Mechanics (Berlin: Springer)
[2] Hamzavi M and Rajabi A A 2013 Hindawi Publishing Corporation Advances in High Energy Physics 2013 987632
[3] Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C 69 3
[4] Suparmi and Cari 2014 ITB Journal Publisher 46 205
[5] Suparmi A, Cari C and Angraini L M 2014 AIP Conf. Proc. 1615 111
[6] Zhou S G, Meng J and Ring P 2003 Phys. Rev. Lett. 91 262501
[7] Bahar M K and Yasuk F 2012 Chin. Phys. B 22 010301
[8] Hassanabadi H, Ikot A N and Zarrinkamar S 2014 Acta Phys. Polon. A 126 647
[9] Bakkeshizadeh S and Vahidi V 2012 Adv. Studies Theor. Phys. 6 733
[10] Hassanabadi H, Yazarloo B H and Salehi N 2013 Indian J. Phys. 88 405
[11] Aryanthy V D, Suparmi C and Saraswati I 2013 Seminar Nasional 2nd Lontar Physics Forum 2013
[12] Ihtiari, Saraswati I, Suparmi and Cari Seminar Nasional 2nd Lontar Physics Forum 2013
[13] Meyur S and Debnath S 2009 Lat. Am. J. Phys. Educ. 3 300
[14] Suparmi A, Cari C and Deta U A 2014 Chin. Phys. B 23 090304
[15] Kurniawan A, Suparmi A and Cari C 2015 Chin. Phys. B 24 030302
[16] Sameer M I, Babatunde J F and Majid H 2013 Chin. Phys. Lett. 30 020305
[17] Ikot A N, Hassanabadi H, Obong H P, Umoren Y E C, Isonguyo C N and Yazarloo B H 2014 Chin. Phys. B 23 120303
[18] Alsadi K S 2014 Chin. Phys. Lett. 31 120301
[19] Soylu A, Bayrak O and Boztosun I 2008 J. Phys. A: Math. Theor. 41 065308
[20] Falaye B J, Hamzavi M and Ikhdair S M 2012 arXiv:1207.1218v
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[3] Unified treatment of the bound states of the Schiöberg and the Eckart potentials using Feynman path integral approach
A. Diaf. Chin. Phys. B, 2015, 24(2): 020302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[7] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[8] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[9] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[10] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[11] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[12] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[13] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[14] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[15] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
No Suggested Reading articles found!