Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 067801    DOI: 10.1088/1674-1056/19/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characterization of the radiation from single-walled zig-zag carbon nanotubes at terahertz range

Wu Qun(吴群)a)d)†, Wang Yue(王玥)a)b), Wu Yu-Ming(吴昱明)c), Zhuang Lei-Lei(庄蕾蕾)b), Li Le-Wei(李乐伟)c), and Gui Tai-Long(桂太龙)b)
a School of Electronics and Information Technology, Harbin Institute of Technology, Harbin 150001, China; b Department of Electronic Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; c Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore; d State Key Laboratory of Millimeter Wave, Southeast University, Nanjing 211189, China
Abstract  This paper investigates the radiation characteristics of metal single-walled zig-zag carbon nanotubes as a dipole antenna at terahertz wave range. The current distribution, input impedance and mutual impedance are calculated for various geometrical parameters of vertically-aligned carbon nanotubes. The numerical results demonstrate the properties of the antenna depending strongly on the geometrical parameters such as the radius, the lengths of carbon nantobues, and the spacing between nanotubes. It is found that the zig-zag carbon nanotubes exhibit very high input impedance and the mutual impedances for antenna array applications. These unique high impedance properties are different from the conventional metal thin wire antenna. The far-field patterns and gain of antenna array are also calculated. The maximum gain of array of 100-element array is up to 20.0 dB, which is larger than the gain of 0.598~dB of single dipole antenna at distance $d = 0.5\lambda $.
Keywords:  zig-zag carbon nanotube      dipole antenna      terahertz      impedance  
Received:  31 March 2009      Accepted manuscript online: 
PACS:  84.40.Ba (Antennas: theory, components and accessories)  
  85.35.Kt (Nanotube devices)  
  61.80.-x (Physical radiation effects, radiation damage)  
  78.70.Gq (Microwave and radio-frequency interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~60571026), the Open Project of State Key Laboratory of Millimeter Wave (Grant No.~K201006) and the Science and Technology Research Foundation of Heilongjiang Education Bureau

Cite this article: 

Wu Qun(吴群), Wang Yue(王玥), Wu Yu-Ming(吴昱明), Zhuang Lei-Lei(庄蕾蕾), Li Le-Wei(李乐伟), and Gui Tai-Long(桂太龙) Characterization of the radiation from single-walled zig-zag carbon nanotubes at terahertz range 2010 Chin. Phys. B 19 067801

[1] Iijima S and Ichihashi T 1993 Nature 363 603
[2] Bethune D S, Klang C H, de Vries M S, Gorman G, Savoy R, Vazquez J and Beyers R 1993 Nature 363 605
[3] O'Connell M J 2006 Carbon Nanotubes Properties and Applications (London: CRC Press)
[4] Gael F C, Shinichi Y and Bipul P 2008 Nano Lett. 8 706
[5] Yuan Y H, Miao R C, Bai J T and Hou X 2006 Chin. Phys. 15 2761
[6] Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J and Ph. Avouris 2002 Phys. Rev. Lett. 89 106801
[7] Patil N, Deng J and Mitra S 2009 IEEE Trans. Nanotech. 149 150
[8] Kong J, Franklin N R, Zhou C W, Chapline M G, Peng S, Cho K J and Dai H J 2000 Science 287 622
[9] Dresselhaus M S 2004 Nature 432 959
[10] Wang Y, Kempa K, Kimball B, Carlson J B, Benham G, Li W Z, Kempa T, Rybczynski J, Herczynski A and Ren Z F 2004 Appl. Phys. Lett. 85 2607
[11] Kempa K, Rybczynski J, Huang Z P, Gregorczyk K, Vidan A, Kimball B, Carlson J, Benham G, Wang Y, Herczynski A and Ren Z F 2007 Adv. Mater. 19 421
[12] Jin H and Hanson G W 2006 IEEE Trans. Nanotech. 5 766
[13] Hanson G W 2006 IEEE Trans. Antennas Propagat. 54 76
[14] Fan W H, Liu H L, Zhang T Y and Zhu S L 2009 Acta Phys. Sin. 58 3658 (in Chinese)
[15] Wang C and Zhang Y H 2006 Chin. Phys. 15 649
[16] Shi W, Qu G H and Wang X M 2009 Acta Phys. Sin. 58 477 (in Chinese)
[17] Zhang T Y and Zhao W 2008 Chin. Phys. B 17 4285
[18] Shi W, Qu G H, Xu M, Ji W L, Xue H, Zhang L Q and Tian L Q 2009 Appl. Phys. Lett. 92 072110
[19] Wang Y, Wu Q, He X J, Zhang S Q and Zhuang L L 2009 Chin. Phys. B 18 1801
[20] Wilton D R and Butler C M 1976 IEEE Trans. Antennas. Propagat. 1 84
[21] Burke P J, Li S and Yu Z 2006 IEEE Trans. Nanotech. 5 314
[22] Burke P J, Spielman I B, Eisenstein J P, Pfeiffer L N and West K W 2000 Appl. Phys. Lett. 76 745
[23] Slepyan G Ya, Maksimenko S A, Lakhtakia A, Yevtusheno O and Gusakov A V 1999 Phys. Rev. B 60 17136
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
No Suggested Reading articles found!