Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064210    DOI: 10.1088/1674-1056/ac4f5b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Switchable terahertz polarization converter based on VO2 metamaterial

Haotian Du(杜皓天)1, Mingzhu Jiang(江明珠)1,2, Lizhen Zeng(曾丽珍)1, Longhui Zhang(张隆辉)1, Weilin Xu(徐卫林)1, Xiaowen Zhang(张小文)1, and Fangrong Hu(胡放荣)1,†
1 Guangxi Key Laboratory of Automatic Detecting Technology and Instrument, Guilin University of Electronic Technology, Guilin 541004, China;
2 Guilin Institute of Information Technology, Guilin 541004, China
Abstract  A switchable terahertz (THz) polarization converter based on vanadium dioxide (VO2) metamaterial is proposed. It is a 5-layer structure which containing metal split-ring-resonator (SRR), the first polyimide (PI) spacer, VO2 film, the second PI spacer, and metal grating. It is an array structure and the period in x and y directions is 100 μm. The performance is simulated by using finite integration technology. The simulation results show that, when the VO2 is in insulating state, the device is a transmission polarization converter. The cross-linear polarization conversion can be realized in a broadband of 0.70 THz, and the polarization conversion rate (PCR) is higher than 99%. Under thermal stimulus, the VO2 changes from insulating state to metallic state, and the device is a reflective polarization converter. The linear-to-circular polarization conversion can be successfully realized in a broadband of 0.50 THz, and the PCR is higher than 88%.
Keywords:  switchable      terahertz (THz) metamaterial      polarization conversion      vanadium dioxide (VO2)  
Received:  10 December 2021      Revised:  18 January 2022      Accepted manuscript online:  27 January 2022
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  84.30.Vn (Filters)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 62065005, 61565004, 11774288, and 62003107), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2018GXNSFAA050043, 2020GXNSFDA238019, 2019JJB110033, and 2017GXNSFBA198029), the Innovation Project of Guangxi Graduate Education, China (Grant Nos. YCSW2021188, YCBZ2021071, and 2020YCXB04), the Foundation from Guangxi Key Laboratory of Automatic Detecting Technology and Instrument (Grant No. YQ21101); and the Research and Development Project in Hunan Province, China (Grant No. 2020SK2111).
Corresponding Authors:  Fangrong Hu     E-mail:  hufangrong@sina.com

Cite this article: 

Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣) Switchable terahertz polarization converter based on VO2 metamaterial 2022 Chin. Phys. B 31 064210

[1] Nagatsuma and Tadao 2011 IEICE Electron Express 8 1127
[2] Wang D and Liu J 2012 Phys. Rev. A 86 023833
[3] Fan R H, Zhou Y and Ren X P 2014 Adv. Mater. 27 1201
[4] Grebenchukov A, Zaitsev A and Masyukov M 2019 J. Phys.: Conf. Ser. 8 012062
[5] Zhang L L, Zhong H and Chao D 2011 Opt. Commun. 283 4993
[6] Wang X K, Cui Y and Sun W F 2020 J. Opt. Soc. Am. A 27 2387
[7] Zhang Z Y, Fan F and Li T F 2020 Chin. Phys. B 29 078707
[8] Zhang J 2014 Opt. Lett. 39 4096
[9] Wang R, Han J and Liu J 2011 Opt. Lett. 45 3506
[10] Wang T J and Chen Y C 2012 Opt. Express 20 601
[11] Dincer F, Karaaslan M and Unal E 2015 Mod. Phys. Lett. 29 334
[12] Oh M, Hwang W and King J 1997 ETRI J. 18 287
[13] Ran Y Z, Shi L H and Wang J B 2019 Opt. Commun. 451 124
[14] Chen X and Fan W H 2015 Mater. Res. Express 2 055801
[15] Zhang K L, Hou Z L and Kong L B 2017 Chin. Phys. Lett. 34 097701
[16] Zhang S, Park Y S and Li J 2009 Phys. Rev. Lett. 102 023901
[17] Ako R T, Lee W and Atakaramians S 2020 APL Photon. 5 046101
[18] Rakhmanov M, Savage R and Reitze D 2002 Phys. Lett. 305 239
[19] Liu W W, Chen S Q and Li Z C 2015 Opt. Lett. 40 3185
[20] Yahiaoui R, Guillet J P and Mounaix 2013 Opt. Lett. 38 4988
[21] Nandja S and Hache A 2019 Opt. Commun. 449 63
[22] Jiang M Z, Hu F R and Zhang L H 2021 J. Lightwave Technol. 39 3488
[23] Zhao S, Hu F R and Xu X L 2019 Chin. Phys. B 28 054203
[24] Singh D, Mittal P and Gosvami N N 2019 Adv. Eng. Mater. 21 1900616
[25] Shi R, Shen N and Wang J W 2019 Appl. Phys. Rev. 6 011312
[26] Parra J, Ivanova T and Menghini M 2021 J. Lightwave Technol. 39 2888
[27] Pouyan S M, Miri M and Sheikhi M H 2021 Appl. Opt. 60 1083
[28] Zhu F H, Du H L and Li Jiang 2018 Appl. Phys. Lett. 112 081103
[29] Li T, Luo X Q and Hu F R 2021 J. Phys. D: Appl. Phys. 54 435105
[30] Ren Y, Tang B 2021 J. Lightwave Technol. 39 5864
[31] Yan D X, Meng M and Li J S 2020 Opt. Express 28 29843
[32] Li Z W and Li J S 2021 Appl. Opt. 60 2450
[33] Liu Y C, Qian Y X and Hu F R 2020 Results in Physics 19 103384
[34] Liu W W and Song Z Y 2021 Carbon 174 617
[35] Cocker T L, Baillie D and Buruma M 2017 Phys. Rev. B 96 205439
[36] Morin F J 1959 Phys. Rev. Lett. 3 34
[37] Victor J L, Gaudon M and Salvatori G 2021 J. Phys. Chem. Lett. 12 7792
[38] Jiang M Z, Hu F R and Zhang L H 2021 J. Lightwave Technol. 39 3488
[39] Hilton D J, Prasankumar R P and Fourmaux 2007 Phys. Rev. Lett. 99 226401
[1] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[2] Switchable and tunable triple-channel bandpass filter
Ming-En Tian(田明恩), Zhi-He Long(龙之河), Li-Jun Feng(冯丽君), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2022, 31(7): 078401.
[3] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[4] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[5] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[6] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[7] Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface
De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁). Chin. Phys. B, 2022, 31(1): 014211.
[8] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
[9] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[10] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[11] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[12] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[13] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[14] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[15] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
No Suggested Reading articles found!