Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120703    DOI: 10.1088/1674-1056/ac2d23
GENERAL Prev   Next  

A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings

Changjian Xie(解长健)1, Xihua Zou (邹喜华)1,†, Fang Zou(邹放)1, Lianshan Yan(闫连山)1, Wei Pan(潘炜)1, and Yong Zhang(张永)2
1 Center for Information Photonics and Communications, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China;
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings (AWGs). It has a parallel structure consisting of two silicon 16-channel AWGs with 200 GHz spacing and a Mach-Zehnder interferometer (MZI) with 200 GHz free spectral range. The 16 channels of one silicon AWG are interleaved with those of the other AWG in spectrum, but with an identical spacing of 200 GHz. For the composed wavelength division multiplexer, the experiment results reveal 32 wavelength channels in C-band, a wavelength spacing of 100 GHz, and a channel crosstalk lower than -15 dB.
Keywords:  wavelength division multiplexer      arrayed waveguide grating      silicon photonics      Mach-Zehnder interferometer  
Received:  07 September 2021      Revised:  28 September 2021      Accepted manuscript online:  06 October 2021
PACS:  07.60.-j (Optical instruments and equipment)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.25.Hz (Interference)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2203600).
Corresponding Authors:  Xihua Zou     E-mail:  zouxihua@swjtu.edu.cn

Cite this article: 

Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永) A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings 2021 Chin. Phys. B 30 120703

[1] Rakshit J K 2020 Brazilian J. Phys. 50 582
[2] Ranjan S and Mandal S 2018 Brazilian J. Phys. 48 74
[3] Yen T H and Hung Y J 2021 J. Light. Technol. 39 146
[4] Fujisawa T, Takano J, Sawada Y and Saitoh K 2021 J. Light. Technol. 39 193
[5] Asakura H, Yoshida T, Tsuda H, Suzuki K, Tanizawa K, Toyama M, Ohtsuka M, Yokoyama N, Matsumaro K, Seki M, Koshino K, Ikeda K, Namiki S and Kawashima H 2015 2015 International Conference on Photonics in Switching (PS) 52
[6] Matos O M, Calvo M L, Cheben P, Janz S, Rodrigo J A, Xu D and Delage A 2006 J. Light. Technol. 24 1551
[7] Zhang Z, Hu J, Chen H, Li F, Zhao L, Gui J and Fang Q 2017 Chin. Opt. Lett. 15 41301
[8] Vellekoop A and Smit M 1991 Light. Technol. J. 9 310
[9] Takahashi H, Suzuki S, Kato K and Nishi I 1990 Electron. Lett. 26 87
[10] Dai D, Wang Z, Bauters J F, Tien M C, Heck M J R, Blumenthal D J and Bowers J E 2011Opt. Express 19 14130
[11] Li H, Gao W, Li E and Tang C 2015 IEEE Photon. J. 7 1
[12] Fang Q, Chen X, Zhao Y, Hu J, Chen H, Qiu C and Yu M 2018 IEEE Photon. J. 10 1
[13] Smit M K and Dam C Van 1996 IEEE J. Sel. Top. Quantum Electron. 2 236
[14] Suzuki T and Tsuda H 2005 IEEE Photon. Technol. Lett. 17 810
[15] Chen S, Fu X, Wang J, Shi Y, He S and Dai D 2015 J. Light. Technol. 33 2279
[16] Chrostowski L and Hochberg M 2015 Silicon Photonics Design:From Devices to Systems (The United Kingdom:Bell and Bain Ltd) p. 114
[17] Okayama H, Shimura D, Takahashi H, Seki M, Toyama M, Sano T, Koshino K, Yokoyama N, Ohtsuka M, Sugiyama A, Ishitsuka S, Tsuchizawa T, Nishi H, Yamada K, Yaegashi H, Horikawa T and Sasaki H 2013 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching WM2 1
[18] Song G, Zou J and He J 2017 Chin. Opt. Lett. 15 30603
[19] Shang K, Pathak S, Qin C and Yoo S J B 2017 IEEE Photon. J. 9 1
[1] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[2] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[3] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[4] Near 100% spectral-purity photons from reconfigurable micro-rings
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2020, 29(11): 114201.
[5] Multi-functional optical fiber sensor system based ona dense wavelength division multiplexer
Yue-Xin Yin(尹悦鑫), Zhifa Wu(吴志发), Siwen Sun(孙思文), Liang Tian(田亮), Xibin Wang(王希斌), Yuanda Wu(吴远大), Daming Zhang(张大明). Chin. Phys. B, 2019, 28(7): 074202.
[6] Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter
Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁). Chin. Phys. B, 2019, 28(3): 030303.
[7] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[8] Phase precision of Mach-Zehnder interferometer in PM2.5 air pollution
Duan Xie(谢端), Haifeng Chen(陈海峰). Chin. Phys. B, 2018, 27(7): 070304.
[9] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[10] 16-channel dual-tuning wavelength division multiplexer/demultiplexer
Pei Yuan(袁配), Yue Wang(王玥), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2018, 27(12): 124208.
[11] Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer
Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽). Chin. Phys. B, 2017, 26(11): 116504.
[12] Design and fabrication of multi-channel photodetector array monolithic with arrayed waveguide grating
Qian-Qian Lv(吕倩倩), Pan Pan(潘盼), Han Ye(叶焓), Dong-Dong Yin(尹冬冬),Yu-Bing Wang(王玉冰), Xiao-Hong Yang(杨晓红), Qin Han(韩勤). Chin. Phys. B, 2016, 25(3): 038505.
[13] Using a Mach–Zehnder interferometer to deduce nitrogen density mapping
F. Boudaoud, M. Lemerini. Chin. Phys. B, 2015, 24(7): 075205.
[14] Mechanical strains in pecvd SiNx:H films for nanophotonic application
O. Semenova, A. Kozelskaya, Li Zhi-Yong, Yu Yu-De. Chin. Phys. B, 2015, 24(10): 106801.
[15] On-chip optical pulse shaper for arbitrary waveform generation
Liao Sha-Sha, Yang Ting, Dong Jian-Ji. Chin. Phys. B, 2014, 23(7): 073201.
No Suggested Reading articles found!